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HIGHER GENUS MEANDERS AND MASUR–VEECH VOLUMES

VINCENT DELECROIX, ÉLISE GOUJARD, PETER ZOGRAF, AND ANTON ZORICH

Abstract. A classical meander is a pair consisting of a straight line in the plane and of a smooth closed
curve transversally intersecting the line, where the pair is considered up to an isotopy preserving the
straight line. The number M(N) of meanders with 2N intersections grows exponentially with N , but
asymptotics still remains conjectural.

A meander defines a pair of transversally intersecting simple closed curves on a 2-sphere. In this
paper we consider pairs of transversally intersecting simple closed curves on a closed oriented surface
of arbitrary genus g. The number of such higher genus meanders still admits exponential upper and
lower bounds as the number of intersections grows. Fixing the number n of bigons in the complement
to the union of the two curves, we compute the precise asymptotics of genus g meanders with n bigons
and with at most 2N intersections and show that this asymptotics is polynomial in N as N → ∞. We
obtain a similar result for the number of positively intersecting pairs of oriented simple closed curves on
a surface of genus g. We also compute the asymptotic probability of getting a meander from a random
braid on a surface of genus g − 1 with two boundary components.

In order to effectively count meanders we identify them with integer points represented by cer-
tain square-tiled surfaces in the moduli spaces of Abelian and quadratic differentials and make use of
recent advances in the geometry of these moduli spaces combined with asymptotic properties of Witten–
Kontsevich 2-correlators on moduli spaces of complex curves.
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1. Introduction

1.1. Classical meanders. A meander is a topological configuration of an oriented straight line in the
plane and of a smooth simple closed curve intersecting transversally the straight line considered up to
an isotopy of the plane preserving the straight line. Meanders can be traced back to H. Poincaré [Po]
and naturally appear in various areas of mathematics, theoretical physics and computational biology (in
particular, they provide a model of polymer folding [DiGG1]).

Figure 1. Equivalent meanders with 10 crossings

The asymptotic count of the number M(N) of meanders with exactly 2N crossings as N tends to
infinity is one of the oldest open questions in the study of meanders. The problem was popularized by
V. I. Arnold (see Problem 1986-7 in [Arn] and later comments by M. Kontsevich and S. Lando in the same
book). Exponential upper and lower bounds for this number were obtained by S. Lando and A. Zvonkin
in [LZv1] and in [LZv2]. They conjectured that there exist constants const, R, α such that

(1.1) M(N)
?∼ const ·R2N ·Nα as N → ∞ .

The conjecture was sharpened by P. Di Francesco, O. Golinelli, E. Guitter [DiGG1], [DiGG2], who
described the generating function of meandric numbers M(N). They suggested in [DiGG2] a conjectural

exact value α = − 29+
√
145

12 ≈ −3.42 interpreted as the corresponding critical exponent α in a two-
dimensional conformal field theory with central charge c = −4 coupled to gravity. The conjectural
approximate value R2 ≈ 12.26 was suggested by I. Jensen [Jen] through computer simulations. The best
known rigorous bounds for the constant R2 are 11.380 ≤ R2 ≤ 12.901, as proved in [AlP]. However, all
elements of this conjecture stated thirty years ago are still open.

Mathematical literature devoted to meanders is vast and varies from representation theory, see [DeKi],
[DuYu], [ElJ], [D], and theory of PDEs [FiRo] to theoretical physics [DiDGG] and more recently to
Schramm–Loewner evolution curves on a Liouville quantum gravity surface [BGS]. Meanders are partic-
ular cases of more general meandric systems, recently studied in [CuKST], [FeT] [FuNe], [GnNP], [Kg].
We recommend a beautiful recent survey [Zv] on meanders for further details and references.

One can organize meanders into groups and count them group by group. For example, one can fix
the number n of minimal arcs (marked by black color in Figure 2) and count separately the number
M+

0,n(N) (respectively M−
0,n(N)) of meanders with at most 2N crossings, exactly n minimal arcs and

having (respectively not having) a maximal arc.

Contributes to M+
0,5(N) Contributes to M−

0,5(N)

Figure 2. Meanders with and without maximal arcs. Both meanders have 5 minimal arcs.

We proved in [DGZZ2] that the counting functions M+
0,n(N) and M−

0,n(N) admit the following asymp-
totics as N → +∞:

M+
0,n(N) =

2

n! (n− 3)!

(
2

π2

)n−2

·
(
2n− 2

n− 1

)2

· N
2n−4

4n− 8
+ o(N2n−4) .

M−
0,n(N) =

4

n! (n− 4)!

(
2

π2

)n−3

·
(
2n− 4

n− 2

)2

· N
2n−5

4n− 10
+ o(N2n−5) .
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This restricted count giving polynomial asymptotics for M±
0,n(N) versus exponential asymptotics for

M(N) neither contradicts nor corroborates conjecture (1.1). A meander with 2N crossings can have

from 3 to 2N − 1 minimal arcs, so M(N) =
∑2N−1

n=3 M+
0,n(N) +

∑2N−2
n=4 M−

0,n(N). However, the sum of

asymptotic expressions on the right-hand sides of the above formulas for M±
0,n has no relation to M(N).

The problem is that, conjecturally, roughly half of the arcs of a typical meander with large number of
crossings are minimal, while in the asymptotic formulas for M±

0,n(N) we fix n and only then let N → +∞,
so our asymptotic formulas make sense only in the regime when n≪ N .

Meanders with a fixed number n of minimal arcs are related to simple closed geodesics on a hyperbolic
sphere with n cusps. When the number of intersections 2N is large, this number gives a reasonable
approximation of the length of a simple closed geodesic in this correspondence. M. Mirzakhani proved
in [Mi2] that the number of simple closed hyperbolic geodesics of bounded length L has exact polynomial
asymptotics with respect to L, while, by classical results of Delsarte, Huber and Selberg, the total number
of closed geodesics of length bounded by L grows exponentially as eL/L.

1.2. Higher genus meanders. Meanders can be considered as configurations of ordered pairs of simple
closed curves on a 2-sphere, where the first curve, corresponding to the straight line, is endowed with a
marked point distinct from intersection points with the second curve. Applying an appropriate diffeomor-
phism of the sphere we can send the first curve to a large circle on a round sphere; postcomposing this
diffeomorphism with the stereographic projection from the marked point to the plane we get a classical
meander.

In this paper, we count higher genus meanders represented by ordered pairs of transversally intersecting
smooth simple closed curves on a higher genus surface. As before, two pairs are considered as equivalent
if there exists an orientation preserving diffeomorphism of the surface (not necessarily homotopic to
identity) which sends one ordered pair of curves to another pair respecting the ordering of curves. We
do not distinguish any point of the first curve in the higher genus case.

Denote by G be the embedded graph defined by a transverse pair of multicurves on a surface S. Vertices
of G are the intersection points of the pair of multicurves. The boundary components of the complement
S − G correspond to closed broken lines formed by edges of G.
Definition 1.1. The boundary components of the complement S −G formed by two edges of G are called
bigons. A bigon is called filling when it bounds a topological disc and non-filling otherwise.

In the genus zero case, bigons correspond to minimal arcs and are always filling. In higher genera a
bigon might bound a connected component of S − G having nontrivial topology; it can also represent
just one of several boundary components of a connected component of S − G. However, we will see in
Section 4 that when the number of bigons is fixed, while the number of intersections grows, for all but a
vanishing part (as N → +∞) of meanders all bigons are filling, and, more generally, for most of meanders
all connected components of S − G are topological discs.

We count higher genus meanders in two settings. In the first setting we study asymptotics of the
number Mg,n(N) of meanders with exactly n bigons (generalizing minimal arcs) on a surface of genus g
with at most 2N crossings, as the bound 2N for the number of crossings tends to infinity.

In the second setting we study asymptotics of the number M+
g (N) of oriented meanders, for which the

curves are oriented and have only positive transverse intersections. Oriented meanders do not exist on a
sphere. In the second setting we fix only the genus g of the surface and let the bound N for the number
of crossings tend to infinity.

Remark 1.2. Note that a higher genus meander might have odd number of intersections (unlike spherical
meanders, which always have even number of intersections). We will see that the number of meanders with
n bigons on a surface of genus g with at most 2N −1 crossings has the same asymptotics as Mg,n(N) and

the number of meanders with at most N crossings has asymptotics 2−(6g−6+2n) Mg,n(N). It is convenient
to keep notation Mg,n(N) for the number of meanders with at most 2N (and not N) crossings to include
the genus zero case and to have better correspondence with count of square-tiled surfaces. However, in
the count M+

g (N) of oriented meanders we assume that the bound for the number of crossings is N and
not 2N .

Consider now a collection of k disjoint arcs on the northern hemisphere and a collection of the same
number of disjoint arcs on the southern hemisphere. Assume that the endpoints of the arcs are equidistant
on the equators. Denote by n the total number of minimal arcs (the ones, for which the endpoints are
neighbors on the equator) on two hemispheres. We computed in [DGZZ2] the asymptotic probability P0,n

that a random gluing of a random pair of arcs as above with k ≤ N gives a meander, see Figure 3. As in
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Figure 3. Identifying a pair of hemispheres, each endowed with k disjoint arcs, by a
common equator we sometimes get a meander and sometimes — not.

the other problems, the asymptotics is computed for a fixed n letting N → +∞. In the current paper we
derive general formulas for probabilities to get a meander under analogous identification of endpoints of
compatible random collections of disjoint arcs on a surface of any genus g with two boundary components.
We consider this problem in various settings and under various asymptotic regimes.

Figure 4. Collection of disjoint strands joining two boundary components of a surface
of genus 1

We also consider random collections of disjoint strands on a connected surface of genus g− 1 with two
boundary components. Assuming that each strand goes from one component to another, as in Figure 4,
we compute asymptotic probability P+

g that upon a random gluing of two boundary components matching
the endpoints of strands one gets a single connected closed curve, or, in other words, an oriented meander.
For genus g = 1 the surface of genus g − 1 with boundary is a cylinder and the problems reduces
to computation of asymptotic probability that random positive integers (k,m), such that m ≤ k, are
coprime. In this case the answer P+

1 = 6
π2 is elementary. However, already for genus g = 2 as in Figure 4

we do not know any way to compute P+
2 = 45

2π4 other than applying technique involving the Masur–Veech
volume VolH2 of the moduli spaces H2 of Abelian differentials. This technique allows us to produce a
list of exact values of P+

g up to g = 1000 in several seconds. For large g we prove the asymptotic formula

P+
g = 1

4g

(

1 + 12+π2

24g +O
(

1
g2

))

.

One more open problem of Arnold, asking what is the probability that the decomposition of a random
“interval exchange permutation” into disjoint cycles contains a single cycle, is closely related to evaluation
of P+

g . This problem admits a solution by methods developed below, but we will treat it separately to
avoid overloading the paper.

1.3. Technique of the proofs. We start with an idea from our work [DGZZ2] on meander count in genus
0, namely, we translate the problem into the language of count of square-tiled surfaces closely related to
evaluation of the Masur–Veech volumes of moduli spaces of meromorphic quadratic differentials. However,
while in [DGZZ2] this translation, basically, completes the solution of the problem, in the current paper
it serves as a starting point. Combinatorics of graphs on a sphere is in certain aspects much simpler
than on higher genus surfaces. In particular, the count of single-band square-tiled surfaces is simple
only in the case of genus 0. Furthermore, by work of J. Athreya, A. Eskin and A. Zorich [AEZ2] the
Masur–Veech volume of any stratum in genus 0 is given by a simple closed formula, while in higher
genera an efficient algorithm providing explicit volumes of general strata, different from the principal
one, is not known yet beyond strata of dimension 12. (Volumes of all low-dimensional strata of quadratic
differentials were evaluated by E. Goujard [Gj] based on the general algorithm developed by A. Eskin
and A. Okounkov [EO2].) By these reasons the results of the current paper were out of reach at the time
when [DGZZ2] was written.
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In order to study higher genus meanders, we apply recent technique of evaluation of Masur–Veech
volumes of moduli spaces of Abelian and quadratic differentials. More concretely, we use most of spec-
tacular advances in the study of Masur–Veech volumes obtained by A. Aggarwal in [Ag1], [Ag2], and
by D. Chen, M. Möller, A. Sauvaget, D. Zagier in [CMSZ], [CMS], [Svg1], [Svg2]. We also use devel-
opments of these results by M. Kazarian [Kz] and by D. Yang, D. Zagier, Y. Zhang [YZZ]; see also a
related work of J. Guo and of D. Yang [GY]. Finally, we also actively use our own recent results on
Masur–Veech volumes of the principal strata of quadratic differentials [DGZZ3], [DGZZ4] and the count
of square-tiled surfaces [DGZZ1], developed, in particular, in view of applications to meanders count.
One of the main technical tools of the current paper consists in the count of square-tiled surfaces through
Witten–Kontsevich correlators (intersection numbers of ψ-classes) obtained in [DGZZ3]. In the context
of meanders we need only 1- and 2-correlators. The 1-correlators admit a closed formula [Wi], and the
2-correlators admit a linear recursion [Zog1] and precise estimates [DGZZ3].

While for general genus g meanders we obtain only a restricted count corresponding to a fixed number
n of bigons, for oriented meanders we solve the enumeration problem completely. We also obtain a precise
large genus asymptotic count of oriented meanders.

Remark 1.3. Count of square-tiled surfaces through Witten–Kontsevich correlators, performed in our
paper [DGZZ3], is closely related to the count of asymptotic frequencies of simple closed geodesics on a
hyperbolic surface performed by M. Mirzakhani [Mi2]. As a byproduct of the count of genus g mean-
ders, we compare in the current paper the frequencies of separating versus non separating simple closed
geodesics on surfaces of a large genus g with n cusps. Numerous quantities responsible for geometry of a
hyperbolic surface of a large genus g with n cusps are very sensitive to the growth rate of the number of
cusps compared to the growth rate of the genus, see results [Ag2] of A. Aggarwal on Witten–Kontsevich
correlators or results by W. Hide [Hi], W. Hide and M. Magee [HiM], W. Hide and J. Thomas [HiT],
of N. Anantharaman and L. Monk [AnMo], T. Budzinski, N. Curien, B. Petri [BCP], M. Lipnowski and
A. Wright [LiWr], Yunhui Wu and Yuhao Xue [WuXue], Yang Shen and Yunhui Wu [ShWu], and of
P. Zograf [Zog2] on the spectral gap and on the Cheeger constant of hyperbolic surfaces of large genus
with cusps. We show in this paper that the frequencies of separating versus non separating simple closed
geodesics have very limited dependence on number of cusps in large genus.

1.4. Structure of the paper. Section 2 provides accurate definitions of higher genus meanders and arc
systems, and presents the main counting results. All the results follow from the correspondence between
meanders and square-tiled surfaces. The latter represent integer points in moduli spaces of quadratic or
Abelian differentials. Section 3 recalls necessary facts on the count of square-tiled surfaces; Section 4
describes the above mentioned correspondence.

Having established this count we complete the proofs of those results stated in Section 2 which concern
fixed genus g and fixed number of bigons n.

Section 6 is devoted to analysis of the resulting count in two complementary asymptotic regimes: when
the number n of bigons is fixed and the genus g grows and when the genus is fixed and the number n of
bigons grows. Here we transpose recent advances in asymptotics of the Masur–Veech volumes of moduli
spaces of Abelian and quadratic differentials mentioned above to asymptotic count of meanders. As an
application we compute the asymptotic probability that a random simple closed geodesic on a hyperbolic
surface of genus g with n cusps is separating in the regime when the number of cusps n is fixed and the
genus g tends to infinity and in the regime when the genus g is fixed while the number of cusps n tends
to infinity stated in Section 2.3.

We complete the paper with two Appendices. Consider the graph G formed by a meander on a surface
of genus g. For a fixed number n of bigons, the total number of boundary components of S − G formed
by 6 and more edges is bounded above by 4g − 4 + n independently of the number 2N of intersections
of a meander. All the remaining boundary components are bounded by exactly 4 edges. In appendix A
we perform a restricted count of the asymptotic number of meanders with at most 2N intersections on a
surface of genus g imposing to a meander not only a fixed number n of bigons in S − G, but also fixing
the numbers of 6-gons, 8-gons, etc.

Appendix B might represent an independent interest with no relation to meanders. Namely, we

compute asymptotics of the sum of the form
∑

k

(
a1n+b1
c1k+d1

)
· · ·
(
aln+bl
clk+dl

)

(
s1n+t1
u1k+v1

)
· · ·
(
smn+tm
u1k+vm

) under assumptions that a1

c1
=

· · · = al

c1
= s1

u1
= · · · = sm

um
and that a1 + · · ·+ al > s1 + · · ·+ sm. Particular cases of this computation

are used in Section 6. Another particular case allows us to derive large genus asymptotics of the sums
∑3g−1

k=0 〈τkτ3g−1−k〉g of Witten–Kontsevich 2-correlators used in Section 6.
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2. Transverse multicurves, meanders and arc systems

2.1. Count of higher genus meanders. In this paper we consider only simple curves on oriented
smooth surfaces, where simple means that the curve is smoothly embedded into the surface, i.e. does not
have self-intersections, self-tangencies or cusps. In this paper we do not exclude closed curves homotopic
to a point. We reserve the notions arc and strand for topological segments. In all our considerations
closed curves live on closed surfaces, while non-closed curves (i.e. arcs and strands) live on surfaces
with boundaries, have endpoints at boundary components and are transverse to the boundaries. By
convention, endpoints of an arc might belong to the same or to different boundary components, while
the endpoints of a strand necessarily belong to distinct boundary components. A multicurve is a finite
collection of pairwise disjoint simple closed curves. In particular, in this paper we do not use integral
weights to encode freely homotopic connected components of a multicurve.

Definition 2.1. We say that an ordered pair of multicurves forms a connected transverse pair if both of
the following conditions are satisfied: all pairs of components of multicurves intersect transversally and
the graph G obtained as a union of two multicurves is connected. The pair is filling if it cuts the surface
into topological disks, or, equivalently, if the graph G is a map.

By convention, the first multicurve in a connected transverse pair of multicurves is called horizontal
and the second one — vertical. We consider natural equivalence classes of pairs of transverse multicurves
up to diffeomorphisms preserving orientation of the surface and the horizontal and vertical multicurves.

Remark 2.2. Note that speaking of a “multicurve” one usually assumes that the components of a multic-
urve are neither contractible nor peripheral (i.e. not freely homotopic to a boundary component). Given
a connected filling transverse pair of multicurves in the sense of Definition 2.1 make a single puncture at
every bigon. We will see in Section 4 that each component of the horizontal (respectively vertical) mul-
ticurve on the resulting punctured surface is neither contractible nor peripheral, so we get a multicurve
in the usual sense.

Figure 5. Both connected pairs of transverse multicurves are filling, but the pair on
the left is nonorientable, while the pair on the right is oriented.

Definition 2.3. A transverse pair of multicurves is called positively oriented (or just oriented for brevity)
if each connected component of each multicurve is oriented in such way that any individual intersection
of any connected component of the horizontal multicurve with any connected component of the vertical
multicurve matches the orientation of the surface. In other words, the intersection number of any con-
nected component of the horizontal multicurve with any connected component of the vertical multicurve
coincides with the naive number of intersections. A transverse pair of multicurves is called orientable if
it admits the above structure and nonorientable otherwise, see Figure 5 for an illustration.

Definition 2.4. A meander of genus g is a connected pair of transverse simple closed curves on a surface
of genus g. Similarly, an orientable meander of genus g is an orientable connected pair of transverse
simple closed curves on a surface of genus g (see Figure 5 for an illustration). Fixing an orientation of
an orientable meander, we get an orientable meander. Meanders of genus g > 0 are called higher genus
meanders.

An orientable meander admits two distinct orientations unless there exists a diffeomorphism of the
surface sending the meander to itself and reversing the orientation of each of the two simple closed curves.
There are no orientable meanders in genus 0.

Following the notation for count of classical meanders on a sphere (which fits traditional conventions
on count of square-tiled surfaces in strata of meromorphic quadratic differentials) we denote by Mg,n(N)
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the number of genus g meanders with at most 2N crossings and exactly n bigons, see Definition (1.1).
It would be convenient to denote by M+

g (N) the number of orientable genus g meanders with at most N
(and not 2N) crossings, see Figure (6) for an illustration.

Figure 6. Meander on the left contributes to M+
2 (4); in the middle — to M1,2(2); on

the right — to M2,4(3).

Theorem 2.5. For any nonnegative numbers g and n satisfying 2g + n ≥ 4, the number Mg,n(N) of
meanders with exactly n bigons on a surface of genus g and with at most 2N crossings satisfies the
following asymptotics:

(2.1) Mg,n(N) = Cg,nN
6g−6+2n + o(N6g−6+2n) as N → ∞ ,

with

(2.2) Cg,n =
cyl1,1(Qg,n)

(4g − 4 + n)!n! (12g − 12 + 4n)
.

Here

(2.3) cyl1,1(Qg,n) =

(
cyl1(Qg,n)

)2

VolQg,n

is a rational multiple of π−6g+6−2n, where VolQg,n denotes the Masur–Veech volume of the moduli space
of quadratic differentials, and cyl1(Qg,n) denotes the contribution of single-band square-tiled surfaces to
this volume. The quantities VolQg,n and cyl1(Qg,n) are expressed in terms of intersection numbers of
ψ-classes by formulas (6.6) and (6.20)–(6.24) respectively.

All but negligible (as N → +∞) part of meanders as above are nonorientable, filling, and have only
bigonal, quadrangular and hexagonal faces.

For any fixed value of g we have

(2.4) Cg,n ∼ 1

8π2
·
a2g
κg

· 1

n
5
2
g−1

·
(
32 · e2
π2 · n2

)n

as n→ ∞ ;

where ag and κg are given by Equations (6.28) and (6.35) respectively.
For any fixed value of n we have:

(2.5) Cg,n ∼ 1

32

√

3

2π
· 1

n!
·
(

4

3g

)n− 3
2

·
(
2e

3g

)4g

as g → ∞ .

The polynomial asymptotics (2.1) and the fact that the coefficient of the leading term is given by
expression (2.2) is proved in Section 5. Asymptotic relation (2.4) is proved at the end of Section 6.3.
Asymptotic relation (2.5) is proved at the end of Section 6.4.

This result can be compared to the following natural exponential bounds for the number of meanders
on surfaces of genus g, with no constraints on the number of bigons:

Lemma 2.6. The number M=N
g of meanders with exactly 2N crossings on a surface of genus g satisfies

the following bounds:

CN ≤M=N
0 ≤M=N

g ≤ 2N · pg(2N + 1) · C2N+1 (1 + o(1)) as N → +∞ ,

where CN = 1
N+1

(
2N
N

)
is the N -th Catalan number, and pg is an explicit polynomial of degree 3g.

Lemma 2.6 is proven in Section 5.

Theorem 2.7. For any genus g ≥ 1, the number M+
g (N) of oriented meanders with at most N crossings

satisfies the following asymptotics:

(2.6) M+
g (N) = C+

g N
4g−3 + o(N4g−3) as N → ∞ ,
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where

(2.7) C+
g =

cyl1,1(Hg)

(2g − 2)!(8g − 6)
.

Here cyl1,1(Hg) =
(cyl1(Hg))

2

VolHg
is a rational multiple of 1

π2g , where VolHg denotes the Masur–Veech volume

of the moduli space of Abelian differentials Hg and

cyl1(Hg) =
1

22g−4(4g − 2)

is the contribution of single-band square-tiled surfaces to this volume.
Moreover, C+

g satisfies the following asymptotics

(2.8)
1

4
√
π
· 1

g
3
2

(
e

4g

)2g (

1 +
29 + π2

24g
+O

(
1

g2

))

as g → ∞ .

The polynomial asymptotics (2.6) and the fact that the coefficient of the leading term is given by
expression (2.7) is proved in Section 5. Asymptotic relation (2.8) is proved in Corollary 6.10 in Section 6.5.

Using the correspondence between meanders and flat surfaces we perform a more detailed count for
higher genus meanders fixing not only the number n of bigons but also the number of 6-gons, 8-gons etc.
This detailed count is presented in Appendix A. However, in the most general non-orientable case, at the
current stage of knowledge of Masur–Veech volumes of general strata of quadratic differentials, one can
transform our formulas into actual rational numbers only for small values of g and n.

Meandric systems. Traditionally, one represents a multicurve as a weighted sum γ = h1γ1+ · · ·+hmγm
of the primitive components γ1, . . . , γm, which are already not pairwise freely homotopic on the punctured
surface (see Remark 2.2), and where the positive integer weight hi encodes the number of components of
the multicurve γ freely homotopic to the primitive component γi for i = 1, . . . ,m.

The number of components of a multicurve γ = h1γ1+ · · ·+hmγm is given by the sum h = h1+ · · ·+hm
of the weights, where m is the number of primitive components.

One can define meandric systems by allowing the vertical multicurve to have several components.
Meandric systems were recently studied in [CuKST], [FeT] [FuNe], [GnNP], [Kg] (see these papers for
further references). The results of [DGZZ4] provide the large genus asymptotic distribution of the number
m of primitive components of those meandric systems, which do not have any bigons. The genus zero
case with a fixed number of bigons was studied in slightly different terms in [AEZ1].

The question of the distribution of the actual number h of components in large genus is still open,
some conjectures about this distribution will be presented in a subsequent paper.

2.2. Asymptotic probability of getting a meander from an arc system. Consider a transverse
pair of multicurves such that the horizontal multicurve is just a single simple closed curve. Cutting the
surface by this horizontal curve we get an arc system as in Figure 7. The cut surface has one or two
connected components depending on whether the simple closed curve is separating or not.

Definition 2.8. A balanced arc system of genus g is a finite collection of smooth pairwise nonintersecting
segments (called arcs) on a smooth oriented surface with two boundary components (a single connected
surface of genus g−1 with two boundary components or two connected surfaces of genera g1, g2 satisfying
g1 + g2 = g, each with a single boundary component), satisfying all of the following conditions:

• the endpoints of all segments are located at the boundary;
• each segment approaches the boundary transversally;
• the numbers of endpoints of the segments on one boundary components is the same as on the
other boundary component (and, hence, equals the number of arcs).

The arc system is filling if the segments cut the surface into a collection of topological disks.

Throughout this paper we consider only balanced arc systems, even when it is not stated explicitly.
Identifying the boundary components of a surface endowed with a balanced arc system by a diffeomor-

phism which matches the endpoints of the arcs and arranges them into smooth curves we get a transverse
pair of multicurves where the horizontal one is connected. We use only those identifications of the bound-
ary which lead to an oriented surface. The following question seems to us natural to address: what is the
probability to obtain a meander by this construction? We have an answer to this question, on average
in the following sense.

Up to a Dehn twist along the boundary component, there are (at most) k distinct identifications of the
two boundary components of a surface endowed with a balanced arc system containing k arcs, matching
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Figure 7. A random identification of a random balanced arc system with large number
of arcs gives a meander with one and the same asymptotic probability exceeding 1/4 for
each of the four types of arc systems as in the picture, see Example 2.11.

the endpoints of the arcs. (The number of distinct identifications is less than k when the arc system
admits symmetries.)

Fix the genus g and the number n of bigons. We always assume that 2g+n ≥ 4. Fix the upper bound
N for the number of arcs. Denote by ASg,n(N) the number of all possible couples (balanced arc system
of genus g with n bigons with k ≤ N arcs; identification) considered up to a natural equivalence. Denote
by MASg,n(N) the number of those couples, which give rise to a meander. Define

Pg,n(N) =
MASg,n(N)

ASg,n(N)
.

Recall that by convention g denotes the genus of the surface obtained after identification of the two
boundary components.

Theorem 2.9. The proportion of balanced arc systems of genus g with n bigons giving rise to meanders
among all such arc systems has a limiting value

(2.9) lim
N→∞

Pg,n(N) = Pg,n ,

which coincides with the relative contribution p1(Qg,n) of single-band square-tiled surfaces to the Masur–
Veech volume VolQg,n. The quantity

(2.10) Pg,n = p1(Qg,n) =
cyl1(Qg,n)

VolQg,n

is a rational multiple of π−6g+6−2n, where VolQg,n denotes the Masur–Veech volume of the moduli space
of quadratic differentials, and cyl1(Qg,n) denotes the contribution of single-band square-tiled surfaces to
this volume. The quantities VolQg,n and cyl1(Qg,n) are expressed in terms of intersection numbers of
ψ-classes by Formulas (6.6) and (6.20)–(6.24) respectively.

Moreover, for any fixed value of g we have

(2.11) p1(Qg,n) ∼
1√
π
· ag
κg

· n g−1

2

(
8

π2

)n

as n→ ∞ ,

where ag and κg are given by Equations (6.28) and (6.35) respectively.
For any fixed n:

(2.12) p1(Qg,n) ∼
√
6π

12
· 1√

g
, as g → ∞ .

The existence of the limit limN→∞ Pg,n(N) and expression (2.10) for its value are proved at the end
of Section 5. Asymptotic relations (2.11) and (2.12) are proved in Corollaries 6.7 and 6.9 respectively.

Formulas (6.6) and (6.20)–(6.24) for VolQg,n and cyl1(Qg,n) lead to closed expressions for any fixed
genus g as a function of n. For example,

p1(Q0,n) =
1

2

(
2

π2

)n−3(
2n− 4

n− 2

)

,

p1(Q1,n) =
2

π2n
·
4 ·
(
2n−2
n−1

)
+ 1

48 ·
(
2n−1
n−2

)
− n2−n+2

96
n!

(2n−1)!! +
2n

(2n−1)2n

.
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We can choose a setting, in which we consider subsets of arc systems as above sharing a more restricted
topology. Namely, when g is strictly positive, we can separately consider arc systems on a surface of genus
g− 1 with two boundary components, as on the left two pictures in Figure 7. We can also fix a partition
of n minimal arcs into n1 ≥ 0 arcs adjacent to the first boundary component and n2 ≥ 0 arcs adjacent to
the second boundary component, where n1 + n2 = n. If g = 1, we assume that n ≥ 2 and that ni ≥ 1 for
i = 1, 2. Fixing g, n1, n2 as above and the bound N for the number of arcs, denote by ASg,n1,n2

(N) the
number of all possible couples (balanced arc system with ni bigons at the i-th boundary component, where
i = 1, 2, with at most k ≤ N arcs on a connected surface of genus g − 1 with two boundary components;
identification) considered up to a natural equivalence. Denote by MASg,n1,n2

(N) the number of those
couples, which give rise to a meander. Define

Pg,n1,n2
(N) =

MASg,n1,n2
(N)

ASg,n1,n2
(N)

.

Alternatively, we can chose any nonnegative integers g1, g2 such that g1 + g2 = g and consider two
connected surfaces of genera g1 and g2 respectively, each having a single boundary component, as on the
right two pictures in Figure 7. We can also consider any partition n1+n2 = n of n into an ordered sum of
nonnegative integers satisfying the following condition: if gi = 0, for any of i = 1, 2, then ni ≥ 2. Denote
by ASg2,n2

g,n1
(N) the number of all possible couples (balanced arc system on a surface having two connected

components of genera g1 and g2, each with a single boundary component, with n1 bigons on the first
component, with n2 bigons on the second component and with k ≤ N arcs; identification). considered
up to a natural equivalence. Denote by MASg2,n2

g,n1
(N) the number of those couples, which give rise to a

meander. Define

Pg2,n2

g1,n1
(N) =

MASg2,n2

g,n1
(N)

ASg2,n2

g,n1
(N)

.

Theorem 2.10. For any g, n, g1, g2, n1, n2 satisfying the above requirements one has

(2.13) lim
N→∞

Pg,n1,n2
(N) = lim

N→∞
Pg2,n2

g1,n1
(N) = Pg,n ,

Theorem 2.10 is proved at the end of Section 5.

Example 2.11. Consider a random balanced arc system of any of the four types schematically presented
in Figure 7. One should, actually, take much more arcs than in the picture, maintaining, however, a
location of the only two minimal arcs in each of the four cases. Theorem 2.10 affirms, in particular,
that a random identification of boundary components of such an arc system we obtain a meander with
asymptotic probability

lim
N→∞

P2,2,0(N) = lim
N→∞

P2,1,1(N) = lim
N→∞

P1,1
1,1(N) = lim

N→∞
P2,0
0,2(N) P2,2 =

9 230 760

337 · π10
≈ 0.292489

for each of the four types of arc systems as in Figure 7. The numerical value of P2,2 given by For-
mula (2.10), uses the value VolQ2,2 = 337

18144π
10 evaluated by means of Formula (6.6) and the value

cyl1(Q2,2) =
2035
4 evaluated by means of Formula (6.24).

Oriented arc systems (collections of strands). Consider a closed oriented surface endowed with
a connected transverse pair of multicurves, such that the horizontal multicurve is a single simple closed
curve. Cutting the surface by the horizontal curve we get an oriented arc system, or equivalently, a
collection of disjoint strands, each strands joining one boundary component to another, as in Figure 4.
Reciprocally, having a connected oriented surface with two boundary components, and a system of disjoint
strands joining the boundary components and approaching them transversally, we can identify boundary
components in a way which matches the endpoints of the strands, and get a connected transverse pair
of multicurves, where the horizontal multicurve is a single simple closed curve. By construction, the
resulting transverse pair of multicurves is always orientable. Choosing the orientation of the horizontal
curve or of any strand, we uniquely determine the orientation of the resulting pair of multicurves. As
before, when there are k strands, there are (at most) k distinct identifications of the two boundary
components, matching the endpoints of the arcs, up to a Dehn twist along the boundary component.
The number of distinct identification is less than k when the arc system admits symmetries.

Fix the genus g − 1 of the connected oriented surface with two boundary components and the upper
bound N for the number of strands. Denote by AS+

g (N) the number of all possible couples (oriented arc

system with at most N strands on a surface of genus g− 1; identification) and by MAS+
g (N) the number

of couples as above which give ride to a meander. Define

P+
g (N) =

MAS+
g (N)

AS+
g (N)

.
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Theorem 2.12. The proportion of oriented arc systems of genus g giving rise to oriented meanders
among all such arc systems satisfies

(2.14) lim
N→∞

P+
g (N) = P+

g .

Here

(2.15) P+
g = p1(Hg) =

cyl1(Hg)

VolHg

is a rational multiple of π−2g, where VolHg denotes the Masur–Veech volume of the moduli space of
Abelian differentials, and cyl1(Hg) = 1

(2g−1)·22g−3 denotes the contribution of single-band square-tiled

surfaces to this volume.
Moreover,

(2.16) p1(Hg) =
1

4g

(

1 +
12 + π2

24g
+O

(
1

g2

))

as g → +∞ .

The existence of the limit limN→∞ P+
g (N) and expression (2.15) for its value are proved at the end of

Section 5. Asymptotic relation (2.16) is proved in Corollary 6.10 in Section 6.5.

2.3. Count of simple closed geodesics on hyperbolic surfaces with cusps. We pass now to a
different problem concerning closed geodesics on hyperbolic surfaces, that we are able to solve using the
techniques developed in this paper. We refer to [DGZZ3] for more details about the relation between this
problem and the evaluation of Masur–Veech volumes.

M. Mirzakhani has counted in [Mi2] asymptotic frequencies of simple closed geodesics (and, more
generally, of simple closed geodesic multi-curves) on a hyperbolic surface of genus g with n cusps. We
distinguish the non-separating simple closed geodesics and the separating ones. In the latter case we count
all separating simple closed geodesics, no matter the resulting decomposition of the surface of genus g with
n cusps into two subsurfaces of genera g1 + g2 = g and no matter how the cusps are partitioned between
the two subsurfaces. Denote by cg,n,sep and by cg,n,nonsep the corresponding Mirzakhani’s frequencies.

Our asymptotic count of meanders in the regime when one of the two parameters g, n is fixed and the
other tends to infinity implies the following two results (namely, Theorems 2.13 and 2.15) on asymptotic
count of simple closed hyperbolic geodesics.

Theorem 2.13. The ratio of frequencies of separating over nonseparating simple closed geodesics on a
closed hyperbolic surface of genus g = 1 with n cusps has the following asymptotics:

(2.17) lim
n→∞

c1,n,sep
c1,n,nonsep

=
1

6
.

The ratio of frequencies of separating over nonseparating simple closed geodesics on a closed hyperbolic
surface of genus g ≥ 2 with n cusps has the following asymptotics:

(2.18) lim
n→∞

cg,n,sep
cg,n,nonsep

=
1

12g · g! ·
∑3g−4

k=0 〈τkτ3g−4−k〉g−1

,

where 〈τkτ3g−4−k〉g−1 are the Witten–Kontsevich correlators which can be computed recursively by for-
mulas (6.12)–(6.14).

Remark 2.14. M. Mirzakhani proved that the ratio
cg,n,sep

cg,n,nonsep
is shared by all hyperbolic surfaces of genus

g with n cusps, see [Mi2, Corollary 1.4]. In particular, taking a very symmetric hairy torus, which has
marked points at n2 torsion points of your favorite elliptic curve as in the example from [Br, Section 5.3]
or any other randomly chosen hairy torus with a very large number of cusps a random simple closed
geodesics happens to be separating with the same asymptotic probability 1

7 .

g 1 2 3 4 5 6 7 8 9

1
6

1
36

5
882

35
28344

7
25218

77
1210716

143
9686190

715
206641008

12155
14878191186

Table 1. Values of limn→∞
cg,n,sep

cg,n,nonsep
for g = 1, . . . , 9.

Note that though for any fixed g we get a nonzero limit, the right-hand side of (2.18) rapidly decreases
when g grows. Table 1 provides the exact values of the expression in the right-hand side of (2.18) for
small genera g.
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The asymptotic value of the sum of 2-correlators in genus g computed in (B.14) in Appendix B.3
implies the following asymptotics for the expression in the right-hand side of (2.18):

(2.19)
1

12g · g! ·∑3g−4
k=0 〈τkτ3g−4−k〉g−1

∼ 2√
3πg

· 1

4g
as g → +∞ .

Theorem below describes the asymptotics of the ratio
cg,n,sep

cg,n,nonsep
in the complementary regime, when

the number n of cusps is fixed and g → +∞.

Theorem 2.15. For any fixed number n ≥ 0 of cusps, the ratio of frequencies of separating over nonsep-
arating simple closed geodesics on a closed hyperbolic surface of genus g has the following asymptotics:

(2.20)
cg,n,sep
cg,n,nonsep

∼
√

2

3πg
· 1

4g
as g → +∞ .

In particular, it does not depend on n, as soon as n is fixed.

Theorem 2.15 is proved in Section 6.4.
Morally, the asymptotics (2.19) represents the ratio

cg,n,sep

cg,n,nonsep
in the regime 1 ≪ g ≪ n, while the

asymptotics (2.20) represents the ratio
cg,n,sep

cg,n,nonsep
in the regime 1 ≪ n ≪ g. The resulting asymptotics

differ by a factor
√
2. Numerical simulations suggest the following conjectural uniform asymptotics:

Conjecture 2.16.1 The ratio of frequencies of separating over nonseparating simple closed geodesics on
a closed hyperbolic surface of genus g with n cusps admits the following uniform asymptotics:

(2.21)
cg,n,sep
cg,n,nonsep

=

√
2

3πg
· 1

4g
· f
(
n

g

)
(
1 + ε(g, n)

)
,

where the function f : [0; +∞] → R is continuous and increases monotonously from f(0) = 1 to f(∞) =√
2 and the error term ε(g, n) tends to 0 as g → +∞ uniformly in n.

Remark 2.17. The above conjecture claims that the dependence of
cg,n,sep

cg,n,nonsep
on the ratio n

g is moderate

for any hyperbolic surface of large genus. Such a behavior of asymptotic frequencies of simple closed
geodesics is yet another manifestation of its topological nature in a contrast with geometric quantities,
for which the regimes n2 ≪ g and n2 ≫ g are drastically different. For example, by the results of
A. Aggarwal [Ag2, Theorem 1.5 and Remark 1.6], the normalized Witten–Kontsevich correlators are
uniformly close to 1 in the regime n2 ≪ g and might explode exponentially in the complementary regime.
Similarly, by the results of Yang Shen and Yunhui Wu [ShWu] the spectral gap vanishes for Weil–Petersson
random hyperbolic surfaces in the regime n2 ≫ g (at least under an extra technical assumption). See
results cited in Remark 1.3 for more details.

3. Square-tiled surfaces and Masur–Veech volumes

In the current Section we recall the relevant information on the count of square-tiled surfaces. In the
next Section 4 we express the count of higher genus meanders in terms of the count of certain special
square-tiled surfaces and derive those results announced Section 2, which concern any fixed g and n from
the results of the current Section.

3.1. Masur–Veech volume of the moduli space of quadratic differentials. Consider the moduli
space Mg,n of complex curves of genus g with n distinct labeled marked points. The total space Qg,n of
the cotangent bundle over Mg,n can be identified with the moduli space of pairs (C, q), where C ∈ Mg,n

is a smooth complex curve with n (labeled) marked points and q is a meromorphic quadratic differential
on C with at most simple poles at the marked points and no other poles. In the case n = 0 the quadratic
differential q is holomorphic. Thus, the moduli space of quadratic differentials Qg,n is endowed with the
canonical real symplectic structure. The induced volume element dVol on Qg,n is called the Masur–Veech
volume element.

A non-zero quadratic differential q in Qg,n defines a flat metric |q| on the complex curve C. The
resulting metric has conical singularities at zeroes and simple poles of q. The total area of (C, q)

Area(C, q) =

∫

C

|q|

1The conjecture was proved by I. Ren [R] during the last stage of preparation of the current paper. The function f

found independently by I. Ren and by the authors has the form f(t) =
√

6+2t

6+t
.
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is positive and finite. For any real a > 0, consider the following subset in Qg,n:

QArea≤a
g,n := {(C, q) ∈ Qg,n | Area(C, q) ≤ a} .

Since Area(C, q) is a norm in each fiber of the bundle Qg,n → Mg,n, the set QArea≤a
g,n is a ball bundle

over Mg,n. In particular, it is non-compact. However, by the independent results of H. Masur [Ma] and
W. Veech [Ve], the total mass of QArea≤a

g,n with respect to the Masur–Veech volume element is finite.

3.2. Square-tiled surfaces. One can construct a discrete collection of quadratic differentials by as-
sembling together identical flat squares in the following way. Take a finite set of copies of the oriented
1/2 × 1/2-square for which two opposite sides are chosen to be horizontal and the remaining two sides
are declared to be vertical. Identify pairs of sides of the squares by isometries in such way that horizontal
sides are glued to horizontal ones and vertical sides to vertical ones. We get a topological surface S with-
out boundary. We consider only those surfaces obtained in this way which are connected and oriented.
The total area Area(S, q) is 1

4 times the number of squares. We call such surface a square-tiled surface.

Consider the complex coordinate z in each square and a quadratic differential (dz)2. It is easy to check
that the resulting square-tiled surface inherits the complex structure and globally defined meromorphic
quadratic differential q having simple poles at all conical singularities of angle π and no other poles. Thus,
any square-tiled surface of genus g having n conical singularities of angle π canonically defines a point
(C, q) ∈ Qg,n (after labeling the conical singularities). Fixing the size of the square once and forever and
considering all resulting square-tiled surfaces in Qg,n we get a discrete subset STg,n in Qg,n.

Given a sequence of integers µ = [µ1 . . . µm, µm+1 . . . µm+n], where [µ1 . . . µm] is a partition of 4g −
4 + n and µm+1 = · · · = µn+m = −1, the corresponding stratum of quadratic differentials Q(µ) is the
space of equivalence classes of pairs consisting of a complex curve C with m+ n distinct marked points
z1, . . . , zm, p1, . . . , pn and a quadratic differential q with the divisor

∑m
i=1 µizi −

∑n
j=1 pj (both zeroes

and poles of q are considered to be labeled).
For any pair of nonnegative integers (g, n) satisfying 2g+n > 3, the principal stratum of meromorphic

quadratic differentials with at most simple poles is Q(14g−4+n,−1n) (that is, µ = [14g−4+n,−1n]). The
natural morphismQ(14g−4+n,−1n) → Qg,n that forgets the labeling of zeroes of q is a (4g−4+n)!-sheeted
ramified cover of its image in Qg,n. Moreover, this image is open and dense in Qg,n.

Denote by STg,n(N) ⊂ STg,n the subset of square-tiled surfaces in Qg,n made of at most N identical
squares. The strata have a natural locally linear structure given by period coordinates. The square-tiled
surfaces form a lattice in period coordinates in every stratum. This lattice defines a natural volume
element in the stratum by normalizing the volume of the fundamental domain of the lattice to 1. In the
case of the principal stratum the resulting volume element differs from the volume element induced from
the natural symplectic structure on Qg,n by a constant factor depending only on g and n. This justifies
the following conventional definition of the Masur–Veech volume of Qg,n (for 2g + n ≥ 4):

(3.1) VolQg,n := VolQ(14g−4+n,−1n) = 2d · lim
N→+∞

card (STg,n(2N))

Nd
,

where

(3.2) d = dimC Qg,n = dimC Q(14g−4+n,−1n) = 6g − 6 + 2n .

We emphasize that in the above formula we assume that all conical singularities of square-tiled surfaces
are labeled.

The cardinality of the subset of square-tiled surfaces in STg,n(2N) which belong to strata different from
the principal one is negligible asN → +∞, so restricting the count to square-tiled surfaces in the principal
stratum Q(14g−4+n,−1n) does not change the above limit. We denote by ST (Q(µ), N) ⊂ STg,n(N) the
subset of square-tiled surfaces in Q(µ) ⊂ Qg,n tiled with at most N identical squares.

We admit that certain conventions used in the definition (3.1) might seem unexpected. For example,
the square-tiled surfaces in STg,n(2N) are made of at most 2N squares, while we normalize the cardinality
of this set by Nd. Also, as we already mentioned, the principal stratum Q(14g−4+n,−1n) is a (4g−4+n)!-
sheeted cover over an open and dense subspace inQg,n. However, the normalization in (3.1) follows the one
used in the literature including [Ag2], [ADGZZ], [AEZ2], [CMS], [DGZZ3], [Gj]. Natural normalizations
are compared in [DGZZ2, Appendix A].

3.3. Abelian square-tiled surfaces. The total spaceHg of the Hodge bundle overMg can be identified
with the moduli space of pairs (C, ω), where C ∈ Mg is a smooth complex curve of genus g and ω is a
holomorphic 1-form (Abelian differential of the first kind) on C. As in the case of quadratic differentials,
the moduli space Hg is stratified and each stratum H(µ), where µ is a partition of 2g−2, admits a locally
linear structure defined by period coordinates.
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One can also construct Abelian square-tiled surfaces ST Ab
g living in Hg. This time we consider copies

of the unit square 0 ≤ x, y ≤ 1 from the positive quadrant of the standard Euclidean plane. To get
an Abelian square-tiled surface we not only identify horizontal sides of squares to horizontal sides and
vertical to vertical ones, but also respect the orientation of these sides inherited from the axes (Ox)
and (Oy). We denote by STAb

g (N) ⊂ ST Ab
g the subset of Abelian square-tiled surfaces in Hg tiled with

at most N identical squares, and by ST Ab(H(µ), N) the subset of Abelian square-tiled surfaces in the
stratum H(µ) tiled with at most N identical unit squares. By convention, we always label all zeroes of
Abelian differentials (and, thus, all conical points of square-tiled surfaces).

As in the case of quadratic differentials, the only stratum of dimension d = dimHg (called the principal
stratum) is the stratum of Abelian differentials with only simple zeros. We have

card(ST Ab
g (N)) − card(ST Ab(H(12g−2), N)) = o(Nd) as N → +∞ ,

where d = dimC Hg = dimC H(12g−2) = 4g − 3.
As in the case of quadratic differentials, square-tiled surfaces form a lattice in period coordinates.

This lattice provides a canonical normalization of the Masur–Veech volume element. The Masur–Veech
volume VolHg is defined as

(3.3) VolHg = 2d · lim
N→+∞

card(ST Ab
g (N))

Nd
.

The fact that for each g ∈ N a finite limit in (3.3) exists and is strictly positive is a nontrivial statement
which follows from independent results of H. Masur [Ma] and W. Veech [Ve]. The Masur–Veech volumes
of several low-dimensional strata of Abelian differentials were computed in [Zor1] by counting of square-
tiled surfaces. The first efficient algorithm for evaluation of the Masur–Veech volumes of strata of Abelian
differentials was elaborated by A.Eskin and A. Okounkov in [EO1] using quasimodularity of the associated
generating function.

3.4. Count of single-band square-tiled surfaces. For the purposes of the current paper we dis-
tinguish square-tiled surfaces of the following types. We say that a square-tiled surface has a single
horizontal cylinder if the complement to the union of singular horizontal leaves is connected. Clearly,
this complement is a flat cylinder tiled with squares. We distinguish the particular case when, moreover,
this single horizontal cylinder is composed of a single horizontal band of squares.

We performed in [DGZZ1]–[DGZZ3] the count of k-cylinder square-tiled surfaces for k = 1, 2, . . . .
The count of one-cylinder square-tiled surfaces is treated in detail in [DGZZ1] in the Abelian case and
in [DGZZ3] in the quadratic case. We summarize below the relevant results.

Theorem 3.1 ([DGZZ1]–[DGZZ3]). The number card
(
ST1(Qg,n, 2N)

)
of square-tiled surfaces in the

moduli space Qg,n with labeled zeros and poles tiled with at most 2N squares organized into a single
horizontal band of squares has asymptotics

(3.4) card
(
ST 1(Qg,n, 2N)

)
= cyl1(Qg,n) ·

Nd

2d
+O(Nd−1) as N → +∞ ,

where d = dimC Qg,n = 6g− 6 + 2n and the coefficient cyl1(Qg,n) is a positive rational number expressed
in terms of Witten–Kontsevich 2-correlators by formula (6.17).

The number of square-tiled surfaces in the moduli space Qg,n with labeled zeros and poles tiled with at
most 2N squares organized into a single horizontal cylinder has asymptotics

c1(Qg,n) ·
Nd

2d
+O(Nd−1) as N → +∞ ,

where the coefficient c1(Qg,n) satisfies the relation

(3.5) c1(Qg,n) = ζ(6g − 6 + 2n) · cyl1(Qg,n) .

The existence of polynomial asymptotics (3.4) is proved in [DGZZ2, Corollary 4.25]. The fact, that
the coefficient cyl1(Qg,n) is a positive rational number given by formula (6.17) is contained in the proofs
of Theorem 4.2 and of Proposition 4.4 in [DGZZ3]. For the sake of completeness, we present an explicit
proof of this formula in Lemma 6.3 in Section 6.2. Finally, relation (3.5) is an immediate corollary
of [DGZZ3, Formula (1.14) and Lemma 1.32].

Theorem 3.2 ([DGZZ1], [DGZZ2]). The number card
(
ST Ab

1 (Hg, N)
)
of square-tiled surfaces with la-

beled zeros in the moduli space Hg tiled with at most N squares organized into a single horizontal band
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of squares has asymptotics

(3.6) card
(
ST Ab

1 (Hg, N)
)
= cyl1 (Hg) ·

Nd

2d
+O(Nd−1) as N → +∞ ,

where d = dimC Hg = 4g − 3 and

(3.7) cyl1 (Hg) =
1

(2g − 1) · 22g−3
.

The number of square-tiled surfaces in the moduli space Hg with labeled zeros and tiled with at most
N squares organized into a single horizontal cylinder has asymptotics

c1(Hg) ·
Nd

2d
+O(Nd−1) as N → +∞ ,

where the coefficient c1(Hg) satisfies the relation

(3.8) c1(Hg) = ζ(4g − 3) · cyl1(Hg) .

The existence of polynomial asymptotics (3.6) is proved in [DGZZ2, Corollary 4.25]. The fact, that
the coefficient cyl1(Hg) is a positive rational number given by formula (3.7) and the relation (3.8) is the
combination of Equation (2.4) from [DGZZ1, Corollary 2.6] with the two paragraphs preceding [DGZZ1,
Corollary 2.6].

As in the case of quadratic differentials, the condition that all squares of an Abelian square-tiled
surface are organized into a single horizontal cylinder is equivalent to the condition that the complement
to the singular horizontal leaf is connected. By symmetry arguments, we get the same asymptotics (3.4)
and (3.6) with the same constants for the number of square-tiled surfaces with a single vertical (instead
of horizontal) band of squares.

The next statement describes the count of square-tiled surfaces having single horizontal and single
vertical band of squares.

Theorem 3.3 ([DGZZ2]). Consider square-tiled surfaces STg,n with labeled zeroes and poles in the moduli
space Qg,n. Consider the subset ST 1,1(Qg,n, 2N) ⊂ STg,n of those square tiled-surfaces that are tiled with
at most 2N squares and that are, moreover, simultaneously organized into a single horizontal and a single
vertical band of squares. Then

(3.9) card(ST1,1(Qg,n, 2N)) = cyl1,1 (Qg,n) ·
Nd

2d
+ o

(
Nd
)
as N → +∞ ,

where the constant cyl1,1 (Qg,n) satisfies the following relation:

(3.10) cyl1,1 (Qg,n) =

(
cyl1 (Qg,n)

)2

VolQg,n
,

and the constants cyl1 (Qg,n) and d are the ones from Theorem 3.1.

We present now the count for Abelian square-tiled surfaces.

Theorem 3.4 ([DGZZ2]). Consider Abelian square-tiled surfaces ST Ab
g with labeled zeroes in the moduli

space Hg. Consider the subset ST Ab
1,1(Hg, N) ⊂ STg,n of those Abelian square-tiled surfaces, that are tiled

with at most N squares and that are, moreover, simultaneously organized into a single horizontal and a
single vertical band of squares. Then

(3.11) card(ST Ab
1,1(Hg, N)) = cyl1,1 (Hg) ·

Nd

2d
+ o

(
Nd
)
as N → +∞ ,

where the constant cyl1,1 (Hg) satisfies the following relation:

(3.12) cyl1,1 (Hg) =
(cyl1(Hg))

2

VolHg
,

and the constants cyl1 (Hg) and d are the ones from Theorem 3.2.

Theorem 3.3 and Theorem 3.4 are proven in [DGZZ2, Corollary 4.25].
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4. Dictionary of square-tiled surfaces

In this Section we reduce the count of higher genus meanders to the count of square-tiled surfaces and
show that non-filling meanders occur exceptionally rare when the number of intersections becomes large.

Let G be a graph defined as a union of a connected transverse pair of multicurves. The graph G is
embedded into a surface S. Consider a sufficiently small closed tubular neighborhood G of G in S. We
denote by S′ a closed surface obtained by pasting topological discs to all boundary components of the
surface with boundary G. By definition, if the initial transverse pair of multicurves is filling (i.e., if G is
a map), we get back the original surface: in this case S′ is homeomorphic to S. Otherwise, the surface
S′ has strictly smaller genus. For example, a non-filling transverse pair of simple closed curves on the
surface of genus six as in Figure 8 gives rise to a surface S′ of genus two.

Figure 8. Non-filling transverse pair of multicurves.

By construction, G is a map in S′. The vertices of G are intersections of the multicurves, so all vertices
of G have valence 4. Hence, all faces of the dual graph G∗ in S′ are 4-gons. The edges of G∗ dual to
horizontal edges of G will be called vertical, and those dual to the vertical edges of G will be called
horizontal. By construction, any two opposite edges of any face of G∗ are either both horizontal or both
vertical. Realizing the faces of G∗ as identical metric squares we get a square-tiled surface in the sense of
Section 3.

In the case when the transverse pair of multicurves is not filling, we introduce an additional marking
of the associated square-tiled surface in order to record the information on the initial surface. We have
to mark disjoint collections {V1,1, . . . , V1,j1} ⊔ · · · ⊔ {Vk,1, . . . , V1,jk} of disjoint vertices of the tiling and
genera g1, . . . , gk of associated surfaces with respectively j1, . . . , jk boundary components. The genus g
of the initial surface and the genus g′ of the associated square-tiled surface are related by

(4.1) g = g′ + (g1 + j1 − 1) + · · ·+ (gk + jk − 1) ,

where gi + ji − 1 > 0 for i = 1, . . . , k. A square-tiled surface endowed with a marking

({V1,1, . . . , V1,j1}, g1), . . . , ({Vk,1, . . . , V1,jk}, gk)
defines the original surface endowed with an ordered connected transverse pair of multicurves uniquely
up to a homeomorphism.

We can formalize the above constructions as the following statement.

Proposition 4.1. There is a natural one-to-one correspondence between filling connected pairs of trans-
verse multicurves on a surface of genus g and square-tiled surfaces of genus g (with non-labeled conical
points), where the square tiling is given by the graph G∗ dual to the graph G formed by the union of two
multicurves.

This correspondence extends to the bijection between non-filling pairs of transverse multicurves and
marked square-tiled surfaces (with non-labeled conical points), where the marking satisfies Equation (4.1).

Restricting the correspondence to filling transverse connected pairs of simple closed curves we get a
bijection with the subset of square-tiled surfaces of genus g (with non-labeled conical points) having a
single horizontal and a single vertical band of squares.

A square-tiled surface carries a meromorphic quadratic differential q with at most simple poles. This
quadratic differential has the form (dz)2 in the natural coordinate on each square. Simple poles of
q correspond to bigons of the complement S − G (see Definition 1.1); zeroes of degree m correspond
to (4 + 2m)-gons. Thus, restricting our consideration to nonorientable connected transverse pairs of
multicurves on a surface S of genus g, which form exactly n boundary components of the complement
S − G having two edges, we get a quadratic differential in Qg,n in the case when the transverse pair of
multicurves is filling (i.e. when G forms a map) and in Qg′,n with g′ < g in the case when the pair is not
filling. Specifying the numbers µ1, µ2, µ3, . . . , µm, . . . of boundary components of the complement S − G
having respectively 6, 8, 10, . . . , 4+2m, . . . edges we get square-tiled surfaces in the stratum Q(µ, (−1)n).
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Starting from a positively oriented transverse pair of multicurves and applying the construction as
above, we get an Abelian square-tiled surface endowed with an Abelian differential ω having the form dz
in the natural coordinate on each square. This time the boundary components of the connected domains
obtained by removing the union of the transverse pair of multicurves from the surface have 4, 8, 12, . . .
edges. Specifying the numbers µ1, µ2, µ3, . . . , µm, . . . of boundary components of the complement S − G
having respectively 8, 12, . . . , 4 + 4m, . . . edges we get square-tiled surfaces in the stratum H(µ). The
Proposition below is an analog of Proposition 4.1.

Proposition 4.2. There is a natural one-to-one correspondence between filling oriented transverse con-
nected pairs of multicurves on a surface of genus g and Abelian square-tiled surfaces of genus g (with
non-labeled conical points), where the square tiling is given by the graph G∗ dual to the graph G formed
by the union of two multicurves.

This correspondence extends to the bijection between non-filling oriented transverse pairs of multicurves
and marked Abelian square-tiled surfaces (with non-labeled conical points), where the marking satisfies
Equation (4.1).

Restricting the correspondence to filling oriented transverse connected pairs of simple closed curves we
get a bijection with the subset of Abelian square-tiled surfaces of genus g (with non-labeled conical points)
having a single horizontal and a single vertical band of squares.

We are ready now to present our first counting result.

Proposition 4.3. For any fixed g and n satisfying 2g + n ≥ 4 consider transverse connected pairs of
multicurves with at most 2N crossings on a surface S of genus g, such that the corresponding graph G
forms at most n two-edges boundary components of the complement S − G.

The total number of pairs as above which satisfy any of the following properties:

(1) the pair is not filling;
(2) the pair is orientable (can take place only when n = 0);
(3) at least one of the boundary components of the complement S − G has more than six edges;

is of order o(N6g−6+2n) as N → ∞.

The number Gfilling
g,n (N) of filling pairs as above which do not satisfy any of the properties (1)–(3) has

the following asymptotics:

(4.2) Gfilling
g,n (N) =

VolQg,n

(4g − 4 + n)! · n! · (12g − 12 + 4n)
·N6g−6+2n + o(N6g−6+2n) as N → ∞ .

Proof. Suppose that a pair of multicurves as above does not satisfy any of the properties (1)–(3). Then

by Proposition (4.1) the number Gfilling
g,n (N) counts square-tiled surfaces with non-labeled zeroes and poles

in the stratum Q(14g−4+n, (−1)n) of meromorphic quadratic differentials. There are (4g − 4 + n)! · n!
ways to label (4g − 4 + n) zeroes and n poles, so Equation (4.2) follows from (3.1).

Suppose that a pair of multicurves is orientable (this implies that n = 0). Such a pair defines an
Abelian square-tiled surface, that represents a point in one of the finite number of strata Hg′ , where
g′ ≤ g. The number of square-tiled surfaces tiled with at most 2N squares in any given stratum H(µ)
grows as const · Nd as N → ∞, where d = dimC H(µ). Any stratum of Abelian differentials in genus
g′ ≤ g has dimension bounded from above by the dimension dimC Hg = 4g − 3 of Hg. The inequality
2g + n ≥ 4 implies that 4g − 3 < 6g − 6 + n. This proves, that the number of filling orientable pairs is
negligible compared to the number Gfilling

g,n (N) of nonorientable filling pairs computed above as N → ∞.
Similarly, if the pair is filling, nonorientable, but at least one of the faces has more than six edges,

then the associated square-tiled surface lives in one of the finite number of strata Q(µ, (−1)n) of mero-
morphic quadratic differentials in Qg,n, different from the principal stratum. The number of square-tiled
surfaces tiled with at most 2N squares in a stratum Q(µ, (−1)n) grows as const ·Nd as N → ∞, where
d = dimC Q(µ, (−1)n). The dimension of any stratum in Qg,n different from the principal stratum
Q(14g−4+n, (−1)n) is strictly less than dimC Qg,n = 6g − 6 + 2n. This proves, that the number of filling
nonorientable pairs having at least one of the faces with more than six edges is negligible compared to
the number Gfilling

g,n (N) of nonorientable filling pairs computed above.
It remains to prove that the number of non-filling pairs as above is negligible. Equation (4.1) implies

that there is a finite number of choices of parameters k and g′, g1, j1, . . . , gk, jk. Thus, it is sufficient to
prove the statement under assumption that all these parameters are fixed, which we impose from now on.
The dimensional arguments as above allow to restrict consideration to the situation when the resulting
square-tiled surface belongs to the principal stratum Q(14g

′−4+n, (−1)n).
The total number v of vertices of any square-tiled surface of genus g′ with exactly k squares satisfies

the Euler characteristic relation k − 2k + v = 2− 2g′. Thus, when the number of squares is at most 2N ,
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the number of choices for any Vi,j is at most 2N + 2. Thus, the number of choices of all marked points
has the order const1 ·NJ , where J = j1+ · · ·+ jk, as N → ∞. The number of square-tiled surfaces in the
stratum Q(14g

′−4+n, (−1)n) tiled with at most 2N squares grows as const2 ·N6g′−6+2n as N → ∞. This
implies that the total number of marked square-tiled surfaces tiled with at most 2N squares is bounded
by const3 ·N6g′−6+2n+J as N → ∞.

Let G = g1 + · · ·+ gk. Recall that the entries of Equation (4.1) satisfy the conditions gi + ji − 1 > 0
for i = 1, . . . , k. This implies that G+ J − k ≥ k. Equation (4.1) implies that

6g − 6 + 2n = (6g′ − 6 + 2n+ J) +G− k + 5(G+ J − k) .

Since G ≥ 0 and by assumption k ≥ 1 we conclude that

(6g′ − 6 + 2n+ J) = 6g − 6 + 2n− (G− k + 5(G+ J − k))

≤ 6g − 6 + 2n− (−k + 5k) ≤ 6g − 6 + 2n− 4 .

Taking into consideration the asymptotic relation (4.2), which we have already proved, this completes
the proof of Proposition 4.3. �

The statement below is completely analogous:

Proposition 4.4. For any fixed g ≥ 1 consider transverse connected oriented pairs of multicurves with
at most N crossings on a surface S of genus g.

The total number of pairs as above which satisfy any of the following two properties:

(1) the pair is not filling;
(2) at least one of the boundary components of the complement S − G has more than 8 edges;

is of order o(N4g−3) as N → ∞.

The number G+,filling
g (N) of filling pairs as above which do not satisfy any of the properties (1)–(2)

has the following asymptotics:

(4.3) G+,filling
g (N) =

VolHg

(2g − 2)! · (8g − 6)
·N4g−3 + o(N4g−3) as N → ∞ .

5. Proofs of the main result for fixed values of g and n

In this Section we derive part of the main results of Section 2 from the count presented in Section 3.

Proof of relations (2.1) and (2.2) from Theorem 2.5. By Proposition 4.1 nonorientable filling meanders
on a surface of genus g with at most 2N intersections having exactly n bigonal faces and no faces with
more than 6 edges are in the natural one-to-one correspondence with square-tiled surfaces in the stratum
Q(14g−4+n, (−1)n) tiled with at most 2N squares, with non-labeled zeroes and poles, and having a single
horizontal and a single vertical cylinder. The number of such square-tiled surfaces with labeled zeroes
and poles is given by Formula (3.9) from Theorem 3.3. Dividing both sides of (3.9) by the number
(4g − 4 + n)! · n! of different labelings we get the number of unlabeled square-tiled surfaces as above, i.e.

the number Mfilling
g,n (N) of nonorientable filling meanders with n bigonal and with 4g − 4 + n hexagonal

faces, and with no faces of more than 6 edges

Mfilling
g,n (N) = Cg,nN

6g−6+2n + o(N6g−6+2n) as N → ∞ ,

with Cg,n given by Equation (2.2). Proposition 4.3 implies that all but negligible (as N → +∞) part of
meanders as above are nonorientable, filling, and have only bigonal, quadrangular and hexagonal faces,
or, equivalently,

Mg,n(N) = Mfilling
g,n (N) + o(N6g−6+2n) as N → ∞ .

This completes the proof of (2.1). Expression (2.3) for cyl1,1(Qg,n) corresponds to Equation (3.10) from
Theorem 3.3. �

The proof of the part of Theorem 2.7 which concerns any fixed g (i.e. existence polynomial asymp-
totics (2.6) and the fact that the coefficient of the leading term is given by expression (2.7)) is completely
analogous and is based on Theorem 3.4 and Proposition 4.4. The value of cyl1,1(Hg) is given by For-
mula (3.10), the value of cyl1(Hg) is given by Formula (3.7).

Proof of Theorem 2.9. Gluing the two boundary components in such a way that the endpoints of a
balanced arc system are matched, we get a connected transverse pair of multicurves. The horizontal
multicurve has a single connected component: it is a simple closed curve represented by the original
boundary component, whereas the vertical multicurve may have several connected components. All such
transverse connected pairs of multicurves correspond to square-tiled surfaces with unlabeled zeroes and



HIGHER GENUS MEANDERS AND MASUR–VEECH VOLUMES 19

poles having a single horizontal band of squares. Those, which represent meanders, correspond to square-
tiled surfaces with unlabeled zeroes and poles having a single horizontal and a single vertical band of
squares. Once again Proposition 4.2 allows us to limit our consideration to only those pairs of multicurves
of each of the two types which are nonorientable, filling and do not have faces with more than 6 edges.
This implies that

lim
N→∞

Pg,n(N) = lim
N→∞

card(ST unlabeled
1,1 (Q(14g−4+n, (−1)n), 2N))

card(ST unlabeled
1 (Q(14g−4+n, (−1)n), 2N))

.

Since, passing from the count of unlabeled square-tiled surfaces to the count of labeled ones, we have
to label the same number of zeroes and poles for the square-tiled surfaces in the numerator and in the
denominator, we get the same limit for the ratio of the numbers of analogous labeled square-tiled surfaces.
Combining Equations (3.4),(3.9) and (3.10) we get

lim
N→∞

card(ST labeled
1,1 (Q(14g−4+n, (−1)n), 2N))

card(ST labeled
1 (Q(14g−4+n, (−1)n), 2N))

=
cyl1(Qg,n)

VolQg,n
,

which proves (2.9) and (2.10). �

The part of Theorem 2.12 claiming existence of the limit (2.14) and providing expression (2.15) for its
value is proved completely analogously.

The large n and large g asymptotics of the related constants are given in Corollary 6.7, Corollary 6.9
and Corollary 6.10 of Section 6.

Proof of Theorem 2.10. Having been translated into the language of square-tiled surface, Theorem 2.10
becomes an implication of Proposition 4.3 combined with Corollaries 4.24 and 4.25 from [DGZZ2]. For the
sake of completeness we justify below that all topological configurations of filling nonorientable systems
of arcs mentioned in Theorem 2.10 are realizable.

We start with the case when the surface of genus g − 1 has two boundary components. If g = 1, the
proof of existence of a filling nonorientable system of arcs having n1 minimal arcs at the first boundary
component and n2 minimal arcs at the second boundary component is trivial for any pair n1, n2 ∈ N.
Thus, we can suppose that g ≥ 2.

Lemma 5.1. An orientable surface of any genus greater than or equal to one with exactly two boundary
components admits a nonorientable filling balanced system of arcs such that all faces of the complement
are hexagons.

We present an equivalent formulation of this Lemma suitable for technique of Corollaries 4.24 and 4.25
from [DGZZ2].

Lemma 5.2. For any g ≥ 2 the stratum Q(14g−4) admits a one-cylinder separatrix diagram such that
the singular leaf is connected.

Proof. One can use the diagram from [Zor3, Figure 13] for g = 2 and the diagram from [Zor3, Figure 14]
for g ≥ 3 letting in both cases p = 0 (where p is defined in the Figures). �

We will need the following observation. Note that the original system of arcs, constructed in Lemma 5.1
is nonorientable. It means that it contains at least one arc coming back to the same boundary component.
If there is an arc at one boundary component, there should be at least one arc having both endpoints on
the other boundary component since the system is balanced.

Having constructed a system of arcs as in Lemma 5.1 we can complete it with arbitrary number n1

of minimal arcs at the first boundary component and with arbitrary number n2 of minimal arcs at the
second boundary component. If n1 6= n2, the resulting system of arcs is not balanced, but since each of
the boundary components has an arc with both endpoints on this boundary component, taking several
copies of such an arc for the component with deficiency of endpoints we get already a balanced systems.
By construction it is nonorientable and filling. If some of the faces have more than 6 sides, we can add
extra arcs to partition them to get only bigons, quadrilaterals and hexagons. The proof of existence of
balanced arc systems on a connected surface with two boundary components mentioned in Theorem 2.10
is completed. The proof of existence of remaining arc systems mentioned in Theorem 2.10 is trivial. �

Remark 5.3. The technique of the above proofs applies without any further changes to meandric systems.
Meandric systems correspond to square-tiled surfaces having a certain number of horizontal bands of
squares and a certain number of vertical bands of squares, see Section 4 of the original paper [DGZZ2]
for more details.
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Proof of Lemma 2.6. One can easily construct a meander with 2N crossings on a surface of genus g from
a meander with 2N crossings on a sphere by replacing a topological disk, forming a face of the graph
G, by a topological surface of genus g having a single boundary component. This gives an obvious lower
bound M=N

0 for M=N
g . The number M=N

0 is greater than CN , see [LZv1] (the paper [AlP], actually,
provides a sharper bound).

For the upper bound, we first assume that the meander is filling, as it was done above. Cutting along
one of the two closed curves forming the meander we get a filling balanced arc system of genus g with
2N endpoints on each boundary component. We first consider the case, when we get two connected
components of genera g1 and g2, where g1 + g2 = g. The dual graph G∗ of the arc system on each
component is a unicellular map with N edges: the unique face corresponds to the boundary of the cut
component. The number εg(N) of unicellular maps with N edges on a genus g surface is well-known
(see [HrZa, Theorem 2] or [CFF, Theorem 5 and Proposition 6]):

εg(N) = CN · pg(N) ,

where pg is an explicit polynomial of degree 3g. The number of meanders in that case is then bounded by

2N
∑

g1+g2=g εg1(N)εg2(N) ≤ CN
2Pg(N) where Pg(N) = 2N

∑

g1+g2=g pg1(N)pg2(N) is of degree 3g+1
and the factor 2N accounts for the 2N possibly different identifications.

In the second case we get a single connected surface with two boundary components. Now the dual
graph G∗ to the arc system is a bicellular map of genus g − 1 with 2N edges: the two faces of the graph

correspond to the two boundary components of the surface. The number ε
[2]
g−1(N) of such bicellular maps

is bounded by

ε
[2]
g−1(2N) ≤ εg(2N + 1) = C2N+1 · pg(2N + 1) ,

see [HR, Corrolary 1]. The number of meanders in that case is bounded by 2N · pg(2N + 1) · C2N+1,
where the factor 2N accounts for the 2N possibly different identifications.

By Stirling’s approximation we have

(CN )2 ∼ 1

π
·N−3 · 24N , C2N+1 ∼

√

2

π
·N−3/2 · 24N .

Recall that the polynomial Pg(N) has degree 3g + 1 and the polynomial pg(2N + 1) has degree 3g in N .
Hence, the quantity Pg(N) · (CN )2 is negligible compared to 2N · pg(2N + 1) · C2N+1 as N → ∞.

The above estimates imply that the contributions of non-filling meanders are negligible compared to
2N · pg(2N + 1) · C2N+1, since the corresponding dual maps have lower genera.

The rough upper and lower bounds obtained above can be improved using finer arguments. We do not
do it here to avoid overloading of the paper. �

6. Asymptotic count for large values of g and n

6.1. Formula for the Masur–Veech volume through intersection numbers. We recall here the
formula from [DGZZ3] giving the Masur–Veech volume VolQg,n of the moduli spacesQg,n of meromorphic
quadratic differentials with n simple poles on Riemann surfaces of genus g.

A multicurve on a surface of genus g with n punctures cuts the surface into several connected com-
ponents, where each component has certain genus, certain number of boundary components and certain
number of punctures. By a stable graph we call the dual graph to such a multicurve, decorated with the
following information: to each vertex of the graph we associate the genus of the corresponding connected
component, and for each puncture on that component we add a half edge at the corresponding vertex.
These graphs encode the topological type of a multicurve. Using a similar correspondence as the one de-
scribed in Section 4, one can show that these graphs encode also the type of decomposition into cylinders
of a square-tiled surface.

We are particularly interested in stable graphs representing simple closed curves (or, equivalently,
one-cylinder square-tiled surfaces). A stable graph Γ1(g, n), as on the left in Figure 9, represents a
non-separating simple closed curve on a surface of genus g with n punctures. Considering stable graphs
Γ1(g, n) we always assume that g ≥ 1 and that if g = 1, then n ≥ 1 without specifying it explicitly. A
stable graph Γg2,n2

g1,n1
, as on the right in Figure 9, represents a simple closed curve separating the surface

into a subsurface of genus g1 endowed with n1 punctures and a complementary subsurface of genus g2
endowed with n2 punctures. Here g = g1 + g2 and n = n1 + n2. Considering the graphs Γg2,n2

g1,n1
we will

always assume that 2gi + ni ≥ 3 for i = 1, 2, without specifying it explicitly. We denote by Gg,n the set
of all stable graphs corresponding to a surface of genus g with n punctures.
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n2
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Figure 9. Stable graphs representing a non-separating (on the left) and separating
(on the right) simple closed curves.

Let g, n be non-negative integers with 2g+n ≥ 3. Let b1, . . . , bn be formal variables. For a multi-index
d = (d1, . . . , dn) we denote by b2d the product b2d1

1 · · · · · b2dn
n , by |d| the sum d1 + · · ·+ dn and by d! the

product d1! · · · dn!
Define a homogeneous polynomial Ng,n(b1, . . . , bn) of degree 6g − 6 + 2n in the variables b1, . . . , bn as

(6.1) Ng,n(b1, . . . , bn) =
∑

|d|=3g−3+n

cdb
2d ,

where

cd =
1

25g−6+2n d!

∫

Mg,n

ψd1

1 . . . ψdn

n .

Here ψ1, . . . , ψn are the ψ-classes on the Deligne–Mumford compactification Mg,n.
We also use the following common notation for the intersection numbers as above (often called Witten–

Kontsevich correlators). Given an ordered partition d1 + · · ·+ dn = 3g − 3 + n of 3g − 3 + n into a sum
of non-negative integers we define

〈τd1
. . . τdn

〉g :=

∫

Mg,n

ψd1

1 . . . ψdn

n .

Polynomials Ng,n are implicitly present in Kontsevich’s proof [Kon] of Witten’s conjecture [Wi] and
in the discretized model of the moduli space of L. Chekhov, see [Ch1, Ch2]. They represent the top
homogeneous parts of Norbury’s quasi-polynomials counting metric ribbon graphs with edges of integer
lengths [Nb]. Up to a normalization constant 22g−3+n, the polynomial Ng,n(b1, . . . , bn) coincides with the
top homogeneous part of Mirzakhani’s volume polynomial Vg,n(b1, . . . , bn) providing the Weil–Petersson
volume of the moduli space of bordered Riemann surfaces [Mi1].

Given a stable graph Γ denote by V (Γ) the set of its vertices and by E(Γ) the set of its edges. To each
stable graph Γ ∈ Gg,n we associate the following homogeneous polynomial PΓ of degree 6g − 6 + 2n. To
every edge e ∈ E(Γ) we assign a formal variable be. Given a vertex v ∈ V (Γ) denote by gv the integer
number decorating v and denote by nv the valency of v, where the legs adjacent to v are counted towards
the valency of v. Take a small neighborhood of v in Γ. We associate to each half-edge (“germ” of edge)
e adjacent to v the monomial be; we associate 0 to each leg. We denote by bv the resulting collection of
size nv. If some edge e is a loop joining v to itself, be would be present in bv twice; if an edge e joins v
to a distinct vertex, be would be present in bv once; all the other entries of bv correspond to legs; they
are represented by zeroes. To each vertex v ∈ E(Γ) we associate the polynomial Ngv ,nv

(bv), where Ng,v

is defined in (6.1). We associate to the stable graph Γ the polynomial obtained as the product
∏
be over

all edges e ∈ E(Γ) multiplied by the product
∏
Ngv,nv

(bv) over all v ∈ V (Γ). We define PΓ as follows:

PΓ(b) =
26g−5+2n · (4g − 4 + n)!

(6g − 7 + 2n)!
· 1

2|V (Γ)|−1
· 1

|Aut(Γ)| ·
∏

e∈E(Γ)

be ·
∏

v∈V (Γ)

Ngv,nv
(bv) .

Example 6.1. Using the rule described above we get the following polynomials associated to the graphs
Γ1(g, n) and Γg2,n2

g1,n1
from Figure 9.

PΓ1(g,n)(b) =
26g−5+2n · (4g − 4 + n)!

(6g − 7 + 2n)!
· 1
2
· b1 ·Ng−1,n+2(b1, b1, 0, . . . , 0) ,(6.2)

PΓ
g2,n2
g1,n1

(b1) =
26g−5+2n · (4g − 4 + n)!

(6g − 7 + 2n)!
· 1

2|Aut(Γg2,n2
g1,n1)|

(6.3)

× b1 ·Ng1,n1+1(b1, 0, . . . , 0) ·Ng2,n2+1(b1, 0, . . . , 0) .

Here we used the fact that |Aut(Γ1(g, n))| = 2 for any g and n. We have

(6.4) |Aut(Γg2,n2

g1,n1
)| =

{

2 when we have both g1 = g2 and n1 = n2 ;

1 otherwise .
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We now define an operator Z acting on polynomials. It is defined on monomials as

(6.5) Z :
k∏

i=1

bmi

i 7−→
k∏

i=1

(
mi! · ζ(mi + 1)

)
,

and extended to arbitrary polynomials by linearity. Everywhere in the current paper ζ is the Riemann
zeta function

ζ(s) =
∑

n≥1

1

ns
.

We have proved in [DGZZ3] the following statement.

Theorem ([DGZZ3, Theorem 1.5]). The Masur–Veech volume VolQg,n of the moduli space of meromor-
phic quadratic differentials with n simple poles on complex curves of genus g has the following value:

(6.6) VolQg,n =
∑

Γ∈Gg,n

Vol(Γ) ,

where the contribution of an individual stable graph Γ is equal to

(6.7) Vol(Γ) = Z(PΓ) .

6.2. Contribution of single-band square-tiled surfaces. In this section we analyze the contributions
Vol(Γ1(g, n)) and Vol(Γg2,n2

g1,n1) of the graphs representing square-tiled surfaces having a single horizontal

cylinder to the Masur–Veech volume VolQg,n expressed as a sum in the right-hand side of Equation (6.6).
We start with preparatory facts on Witten–Kontsevich correlators involved in the polynomials PΓ1(g,n)

and PΓ
g2,n2
g1,n1

; see Equations (6.2) and (6.3) respectively.

Lemma 6.2. For g ≥ 1, n ≥ 0, d1 ≥ 0, the intersection numbers satisfy the following equalities:

〈τn0 τ3g+n−2〉g = 〈τ3g−2〉g =
1

24g · g! .(6.8)

〈τn+2
0 τn〉0 = 1 .(6.9)

〈τn0 τd1
τ3g−1+n−d1

〉g =

min(d1,n)∑

i=max(0,d1−3g+1)

(
n

i

)

〈τd1−iτ3g−1−d1+i〉g .(6.10)

〈τn0 τd1
τn−1−d1

〉0 =

(
n− 1

d1

)

.(6.11)

Proof. Applying repeatedly the string equation

〈τ0τd1
. . . τdk

〉g =
k∑

i=1

〈τd1
. . . τdi−1 . . . τdk

〉g

we eliminate τ0 thus proving the left equality in (6.8) and Equation (6.10). The right equality in (6.8) is
due to E. Witten [Wi]. The remaining equalities concern genus 0 correlators, for which we use the closed
formula

〈
n∏

i=1

τdi
〉0 =

(n− 3)!
∏

i di!
.

also due to E. Witten [Wi, p. 251, after Equation (2.26)]. �

Values of 2-correlators 〈τkτ3g−1−k〉g can be obtained in a particularly efficient way through the following
recursive relations found in [Zog1]:

(6j + 1)〈τ3jτ3g−1−3j〉g − (6j + 1− 6j)〈τ3j−1τ3g−3j〉g =
1

24g · g!

(
g

j

)(

1− 2j

g

)

.(6.12)

(6j + 3)〈τ3j+1τ3g−2−3j〉g − (6j − 1− 6j)〈τ3jτ3g−1−3j〉g = −2 · 1

24g · g!

(
g − 1

j

)

.(6.13)

(6j + 5)〈τ3j+2τ3g−3−3j〉g − (6j − 3− 6j)〈τ3j+1τ3g−2−3j〉g = 2 · 1

24g · g!

(
g − 1

j

)

.(6.14)

Here we use the explicit formula (6.8) for 〈τ0τ3g−1〉g = 1
24g ·g! as the base of the recursion. In genera 1

and 2 this gives 〈τ1τ1〉 = 1
24 and 〈τ1τ4〉 = 1

384 , 〈τ2τ3〉 = 29
5760 . The remaining correlators in g = 1, 2 are

obtained by the symmetry 〈τ3g−1−kτk〉g = 〈τkτ3g−1−k〉g for k = 0, . . . , 3g − 1.
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We denote by c1(Γ) = Vol(Γ) the contribution of square-tiled surfaces associated to a stable graph Γ
to the Masur–Veech volume VolQg,n, see Equation (6.6). Graphs Γ1(g, n) and Γg2,n2

g1,n1
as in Figure 9 are

the only stable graphs in Gg,n having a single edge (which we distinguish from n legs). In other words,
these are the only graphs representing 1-cylinder square-tiled surfaces. Among all 1-cylinder square-tiled
surfaces associated to these stable graphs, we distinguish those for which the single horizontal cylinder is
composed from a single-band of squares and we can compute separately the contribution cyl1(Γ) of such
square-tiled surfaces to the Masur–Veech volume VolQg,n.

Lemma 6.3. The contributions of single-band square-tiled surfaces to the volume of the principal strata
Qg,n are given by

cyl1(Γ1(g, n)) = 2g+1 (4g − 4 + n)!

(3g − 4 + n)!
·
3g−4+n
∑

d1=0

(
3g − 4 + n

d1

)

〈τn0 τd1
τ3g−4+n−d1

〉g−1(6.15)

cyl1(Γ
g2,n2

g1,n1
) =

2g+2

|Aut(Γg2,n2
g1,n1)|

· (4g − 4 + n)!

(3g − 4 + n)!
· 1

g! · 24g ·
(
g

g1

)

·
(

3g − 4 + n

3g1 − 2 + n1

)

,(6.16)

where g = g1 + g2 and n = n1 + n2.
The total contribution of single-band square-tiled surfaces to the volume of Qg,n is given by

(6.17) cyl1(Qg,n) = cyl1(Γ1(g, n)) +
1

2

n∑

n1=0

(
n

n1

) g
∑

g1=0

|Aut(Γg2,n2

g1,n1
)| · cyl1(Γg2,n2

g1,n1
) .

Proof. The following relation generalizing (3.5) is valid for any stable graph Γ with a single edge and for
any g and n.

(6.18) Vol(Γ) = c1(Γ) = cyl1(Γ) · ζ(6g − 6 + 2n) .

This relation is an immediate corollary of [DGZZ3, Formula (1.14) and Lemma 1.32]. Thus, to prove the
desired expressions, it is sufficient to apply the relation Vol(Γ) = Z(PΓ) given by (6.7) to the two stable
graphs under consideration. The polynomials PΓ1(g,n)(b) and PΓ

g2,n2
g1,n1

(b1) are given in Equation (6.2)

and (6.3), where, applying the general definition (6.1) of the polynomials Ng,n we obtain

Ng−1,n+2(b1, b2, 0, . . . , 0) =
1

25g−7+2n

∑

d1+d2=3g−4+n
d1≥0, d2≥0

〈τn0 τd1
τd2

〉g−1

d1!d2!
b2d1

1 b2d2

2 ,

Ng1,n1+1(b1, 0, . . . , 0) =
1

25g1−4+2n1

〈τn1

0 τ3g1−2+n1
〉g1

(3g1 − 2 + n1)!
b6g1−4+2n1

1 .

Plugging the operator Z, defined by (6.5), into the formula (6.7) and simplifying the results using rela-
tions (6.8)–(6.11) from Lemma 6.2 we obtain Equations (6.15) and (6.16).

Note that Γg2,n2
g1,n1

and Γg1,n1
g2,n2

define the same stable graphs. Thus, the stable graph Γg2,n2
g1,n1

is present
in the sum (6.17) exactly once if and only if both conditions g1 = g2 and n1 = n2 are satisfied. All
other stable graphs of the form Γg2,n2

g1,n1
are present in the sum (6.17) twice. Taking into consideration

Equation (6.4), this justifies (6.17). Lemma 6.3 is proved. �

The combinatorial Proposition 6.4 below simplifies expressions (6.15) and (6.16) for cyl1(Γ1(g, n)) and
cyl1(Γ

g2,n2
g1,n1

) respectively.

Proposition 6.4. Assume that g ≥ 1, and that if g = 1 then n ≥ 2. The contribution to the Masur–Veech
volume of the principal stratum Qg,n of meromorphic quadratic differentials coming from single-band
square-tiled surfaces corresponding to the stable graph Γ1(g, n) has the following form:

cyl1(Γ1(1, n)) = 4n ·
(
2n− 2

n− 1

)

for g = 1 ;(6.19)

cyl1(Γ1(g, n)) = 2g+1

(
4g − 4 + n

g

)

· g!
3g−4
∑

k=0

(
3g − 4 + 2n

n+ k

)

〈τkτ3g−4−k〉g−1 for g ≥ 2 .(6.20)

The total contribution to the Masur–Veech volume of the principal stratum Qg,n of meromorphic qua-
dratic differentials coming from single-band square-tiled surfaces corresponding to all stable graphs Γg2,n2

g1,n1

has the following form:

(6.21)
1

2

(
n

n1

)
∑

g1+g2=g
n1+n2=n

|Aut(Γg2,n2

g1,n1
)| · cyl1(Γg2,n2

g1,n1
) = 2g+1

(
4g − 4 + n

g

)
1

24g

g
∑

g1=0

(
g

g1

)(
3g − 4 + 2n

3g1 − 2 + n

)

.
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The total contribution of single-band square-tiled surfaces to the volume of Qg,n is given by

cyl1(Q0,n) = 2

(
2n− 4

n− 2

)

for n ≥ 4 ;(6.22)

cyl1(Q1,n) = 4n ·
(
2n− 2

n− 1

)

+
n

3
·
(
2n− 1

n− 2

)

for n ≥ 2 ;(6.23)

cyl1(Qg,n) = 2g+1

(
4g − 4 + n

g

)

·
(

g!

3g−4
∑

k=0

(
3g − 4 + 2n

n+ k

)

〈τkτ3g−4−k〉g−1(6.24)

+
1

24g

g
∑

g1=0

(
g

g1

)(
3g − 4 + 2n

3g1 − 2 + n

))

for g ≥ 2 .

Proof. We develop formulas obtained in Lemma 6.3. Using the following combinatorial identity (see [Gd,
(3.20)]):

(6.25)

n∑

k=0

(
n

k

)(
x

k + r

)

=

(
n+ x

n+ r

)

.

and Equation (6.11), we get for g = 1

3g−4+n
∑

d1=0

(
3g − 4 + n

d1

)

〈τn0 τd1
τ3g−4+n−d1

〉g−1 =

n−1∑

d1=0

(
n− 1

d1

)(
n− 1

d1

)

=

(
2n− 2

n− 1

)

,

which simplifies the sum in (6.15) in the case g = 1.
When g ≥ 2, using equation (6.10) and letting k = d1 − i, we get:

3g−4+n
∑

d1=0

(
3g − 4 + n

d1

)

〈τn0 τd1
τ3g−4+n−d1

〉g−1

=

3g−4+n
∑

d1=0

min(d1,n)∑

i=max(0,d1−3g+4)

(
3g − 4 + n

d1

)(
n

i

)

〈τd1−iτ3g−4−d1+i〉g−1 =

=

3g−4
∑

k=0

〈τkτ3g−4−k〉g−1

n∑

i=0

(
n

i

)(
3g − 4 + n

i+ k

)

=

3g−4
∑

k=0

〈τkτ3g−4−k〉g−1

(
2n+ 3g − 4

n+ k

)

,

where we use identity (6.25) one more time to justify the last equation.
Finally, we can simplify the second term in the sum (6.17) from Lemma 6.3 simplifying expression (6.20)

for cyl1(Γ
g2,n2
g1,n1

) from this Proposition. We get

1

2

n∑

n1=0

(
n

n1

) g
∑

g1=0

|Aut(Γg2,n2

g1,n1
)| · cyl1(Γg2,n2

g1,n1
) =

= 2g+1 · (4g − 4 + n)!

(3g − 4 + n)!
· 1

g! 24g

n∑

n1=0

g
∑

g1=0

(
n

n1

)(
g

g1

)(
3g − 4 + n

3g1 − 2 + n1

)

.

Changing the order of summation and applying identity (6.25) we can simplify the latter sum as
g
∑

g1=0

(
g

g1

) n∑

n1=0

(
n

n1

)(
3g − 4 + n

3g1 − 2 + n1

)

=

g
∑

g1=0

(
g

g1

)(
3g − 4 + 2n

3g1 − 2 + n

)

,

which justifies (6.21). �

Combining proposition 6.4 with recursive formulas (6.12)–(6.14) for 2-correlators we get explicit ex-
pressions for cyl1(Qg,n) in terms of g and n. In the next two sections we analyze cyl1(Qg,n) in two
regimes: when g is fixed and n→ ∞ and in the regime when n is fixed and g → +∞.

6.3. Asymptotic count for large values of n. We now discuss asymptotics of the quantities VolQg,n,
cyl1(Qg,n), c1(Qg,n), representing the Masur–Veech volume, and the contributions to this volume coming
from single-band square-tiled surfaces, and from one-cylinder square-tiled surfaces respectively. In this
section we study the regime when the genus g is fixed while the number of poles n tends to infinity. This
allows us to derive asymptotic of the quantities cyl1,1(Qg,n) and P1(Qg,n) in the same regime and, thus,
prove Formula (2.4) from Theorem 2.5.
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We start with the following simple Lemma:

Lemma 6.5. For any positive integer a ≥ 2 and for any integers b and c one has the following asymp-
totics:

(6.26)

(
an+ b

n+ c

)

∼ 1√
2πn

· aan+b+ 1
2

(a− 1)
(a−1)n+b+ 1

2

as n→ +∞ .

Proof. It is sufficient to prove the Lemma for particular case c = 0 since then, given arbitrary c we denote

n+ c by m and apply the asymptotic formula for
(
am+(b−ac)

m

)
.

For c = 0 we apply Stirling’s formula to each of the three factorials in
(
an+b
n

)
= (an+b)!

((a−1)n+b)!·n! and

having simplified the resulting expression we get (6.26). �

Corollary 6.6. For any fixed genus g ≥ 0, we have the following asymptotics:

(6.27) cyl1(Qg,n) ∼ c1(Qg,n) ∼
1√
π
· ag · ng− 1

2 · 4n as n→ ∞ ,

where a0 =
1

8
, a1 =

7

6
and

(6.28) ag = 22g−3 ·
(

22g
3g−4
∑

k=0

〈τkτ3g−4−k〉g−1 +
1

3gg!

)

for g ≥ 2 .

Proof. A computation for g = 0 is, essentially, performed in [DGZZ2]. Namely, by Formula (1.5)
in [DGZZ2] one has

p1(Q(1n−4,−1n)) =
cyl1(Q(1n−4,−1n))

VolQ(1n−4,−1n)
.

Since Q(1n−4,−1n) is the unique stratum of top dimension in the moduli space Q0,n we get equalities
cyl1(Q(1n−4,−1n)) = cyl1(Q0,n) and VolQ(1n−4,−1n) = VolQ0,n. Multiplying the asymptotic expres-
sion for p1(Q(1n−4,−1n)), evaluated in [DGZZ2] (see the expression just above Theorem 1.3), by the exact
value (6.32) of VolQ0,n, obtained in [AEZ2], we get the desired asymptotic expression for cyl1(Q0,n).

Assume that g ≥ 2 (the computation for g = 1 is similar, but simpler). We first compute the
contribution coming from the stable graph Γ1(g, n), and show that for any fixed g we have

(6.29) Vol Γ1(g, n) ∼
24g−3

√
π

(
3g−4
∑

k=0

〈τkτ3g−4−k〉g−1

)

ng− 1
2 · 4n as n→ ∞.

In order to prove (6.29) we start by applying (6.26) to get the following asymptotics of the binomial
coefficient present in (6.20):

(6.30)

(
2n+ 3g − 4

n+ k

)

∼ 22n+3g−4

√
πn

as n→ ∞ .

Note that for any fixed g, the asymptotic expression of the binomial coefficient in (6.30) does not depend
on k anymore for large values of n, and thus, can be factored out of the sum in (6.20).

For any fixed g the ratio of factorials in the line above (6.20) has the following asymptotics for large
values of n:

(4g − 4 + n)!

(3g − 4 + n)!
= (n+ 3g − 3)(n+ 3g − 2) · · · (n+ 4g − 4)
︸ ︷︷ ︸

g terms

∼ ng as n→ ∞ .

Recall that Vol Γ1(g, n) = ζ(6g−6+2n) ·cyl1(Γ1(g, n)) and that we have exponentially rapid convergence
ζ(6g − 6 + 2n) → 1 as n → ∞. Combining the three asymptotic relations above we conclude that
formula (6.20) for cyl1(Γ1(g, n)) implies (6.29).

Now we show that for any fixed g the asymptotic volume contribution coming from the remaining
stable graphs has the following form:

(6.31)
1

2

n∑

n1=0

(
n

n1

) g
∑

g1=0

|Aut(Γg2,n2

g1,n1
)| · Vol Γg2,n2

g1,n1
∼ 22g−3

√
π · 3g · g! · n

g− 1
2 · 4n as n→ ∞ .

In order to prove this, we start by applying (6.26) to get the following asymptotics of the binomial
coefficient present in the second line of (6.24):

(
2n+ 3g − 4

n+ 3g1 − 2

)

∼ 22n+3g−4

√
πn

as n→ ∞ .
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We get the same expression as in (6.30). This asymptotic equivalence is uniform for any fixed g and any
g1 in the range 0 ≤ g1 ≤ g. Since it does not depend on g1 for large values of n anymore, it can be
factored out of the sum in (6.24). The remaining sum can be now explicitly computed:

g
∑

g1=0

(
g

g1

)

= 2g .

The rest of the computation is now completely analogous to the case of Γ1(g, n) treated above. �

Having found large n asymptotics of cyl1(Qg,n) we recall information on large number of poles asymp-
totics of VolQg,n.

An explicit formula for the Masur–Veech volume of any stratum of meromorphic quadratic differentials
with at most simple poles in genus 0 was conjectured by M. Kontsevich and proven by J. Athreya–
A. Eskin–A. Zorich in [AEZ2]. In particular, one has

(6.32) VolQ0,n = 4
(π

2

)n−3

for n = 4, 5, . . . .

A simple closed formula for VolQ1,n was found in [CMS, Corollary 1.5]:

(6.33) VolQ1,n = π2n · n!

3(2n− 1)!

(
(2n− 3)!! + (2n− 2)!!

)
for n = 2, 3, . . . .

An expression for VolQg,n in terms of Hodge integrals was recently discovered D. Chen–M. Möller–
A. Sauvaget [CMS]. Based on this formula, M. Kazarian in [Kz] and D. Yang–D. Zagier–Y. Zhang in [YZZ]
independently proved quadratic recursions for the volumes. These results combined with Formula [CMS,
(6)] allow to derive a close expression in the style of (6.33) for VolQg,n for any small value of g.

Thus, the asymptotics of the Masur–Veech volumes for a fixed genus g and large number of poles n is
now completely explicit. For small values of g Formula (6.34) below (including the rational values of κg)
was predicted in [ABCDGLW, (5.12)].

Proposition (Corollary 4 in [YZZ]). For any fixed genus g ≥ 0, the following asymptotics is valid:

(6.34) VolQg,n ∼ κgn
g

2

(
π2

2

)n

as n→ ∞ ,

where

(6.35) κg =
64 · π6g− 11

2

384g · Γ
(
5g−1

2

) · κ̃g ,

κ̃0 = −1 , κ̃1 = 2 , κ̃2 = 98 , κ̃3 = 19600 ,

and where κ̃g is recursively defined by

κ̃g = 50(g − 1)2κ̃g−1 +
1

2

g−2
∑

h=2

κ̃hκ̃g−h for g ≥ 4 .

Recall that for g ∈ N one has

Γ

(
5g − 1

2

)

=







(

5g − 3

2

)

! for odd g

√
π ·

(5g − 3)!!

2
5g−2

2

for even g

.

Corollary 6.7. For any fixed genus g ≥ 0, the following asymptotic formulas are valid:

cyl1,1(Qg,n) ∼
1

π
·
a2g
κg

· n 3g

2
−1

(
32

π2

)n

as n→ ∞ ;(6.36)

p1(Qg,n) ∼
1√
π
· ag
κg

· n g−1

2

(
8

π2

)n

as n→ ∞ ,(6.37)

where ag and κg are given by Equations (6.28) and (6.35) respectively.

Proof. Recall that cyl1,1(Qg,n) =
cyl1(Qg,n)2

VolQg,n
and that p1(Qg,n) =

cyl1(Qg,n)
VolQg,n

. Plugging the asymptotic

expressions (6.27) for cyl1(Qg,n) and (6.34) for VolQg,n we get the desired relations. �
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Proof of Formula (2.4) from Theorem 2.5. Using Stirling’s formula for the factorials in the denominator
of the right-hand side expression in (2.2), we get

(4g − 4 + n)!n! (12g − 12 + 4n) ∼ n4g−4(n!)24n ∼ 8π · n4g−2
(n

e

)2n

as n→ +∞ .

Plugging the expression (6.36) for the large n asymptotics of cyl1,1(Qg,n) into Formula (2.2) for Cg,n and
simplifying the fraction we obtain the desired asymptotics (2.4). �

Having obtained asymptotic expressions (6.29) and (6.31) for large n volume contributions of the stable
graphs as in Figure 9 we are ready to prove Theorem 2.13.

Proof of Theorem 2.13. By [DGZZ3, Theorem 1.22] for any g ≥ 1 one has

(6.38)
cg,n,sep
cg,n,nonsep

=
1
2

∑n
n1=0

(
n
n1

)∑g
g1=0 |Aut(Γg2,n2

g1,n1
)|VolΓg2,n2

g1,n1

Vol(Γ1(g, n))
.

Using the asymptotic expression (6.31) for the numerator of the ratio in the right-hand side of the above
equation and the asymptotic expression (6.29) for the denominator of this ratio we get (2.18) in the
general case g ≥ 2.

It remains to consider the particular case g = 1. Using expression (6.19) for the denominator of (6.38)
and evaluating the expression (6.21) for the numerator of (6.38) in the particular case g = 1 we get

c1,n,sep
c1,n,nonsep

=
4n · 1

24 · 2 ·
(
2n−1
n−2

)

4n ·
(
2n−2
n−1

) =
1

12
· (2n− 1)! (n− 1)! (n− 1)!

(2n− 2)! (n− 2)! (n+ 1)!

=
1

12
· (2n− 1)(n− 1)

n(n+ 1)
∼ 1

6
as n→ +∞ .

which completes the proof of (2.17). �

6.4. Large genus asymptotic count of meanders. In this section we study asymptotics of the quan-
tities cg,n,sep, cg,n,nonsep, cyl1(Qg,n), and VolQg,n in the regime, when n is fixed and g → +∞.

Recall that ζ(m) → 1 as m→ ∞. Thus, Equation (6.18) implies that

(6.39) cyl1(Γ1(g, n)) ∼ Vol(Γ1(g, n)) and cyl1(Γ
g2,n2

g1,n1
) ∼ Vol(Γg2,n2

g1,n1
) as g → +∞

uniformly in n, g1, g2, n1, n2.

Proposition 6.8. For any fixed n ≥ 0 the following asymptotic relations are valid

Vol(Γ1(g, n)) ∼
√

2

3πg
·
(
16

3

)n

·
(
8

3

)4g−4

as g → +∞ ;(6.40)

1

2

n∑

n1=0

(
n

n1

) g
∑

g1=0

Vol(Γg2,n2

g1,n1
) ∼ 2

3πg
· 1

4g
·
(
16

3

)n

·
(
8

3

)4g−4

as g → +∞ .(6.41)

In the particular case n = 0, relations (6.40) and (6.41) were proved in [DGZZ3, (4.5)] and in [DGZZ3,
(4.15)] respectively. In the general case, relation (6.40) was proved by A. Aggarwal in [Ag2, (8.9)]. For
the sake of completeness we present below a short proof of both relations.

Proof. Combining [DGZZ3, Proposition 4.1] and [DGZZ3, Formula (4.2)] we obtain the following large
genus asymptotics for 2-correlators

〈τkτ3g−1−k〉g =
1

24g · g! ·
(6g − 1)!!

(2k + 1)!!(6g − 1− 2k)!!

(

1 +O

(
1

g

))

as g → +∞ ,

where the error term O
(

1
g

)

is uniform in 0 ≤ k ≤ 3g− 1. Passing from double factorials to factorials we

rewrite the above expression as

〈τkτ3g−1−k〉g ∼ 1

24g · g! ·
1

6g
·
(

6g
2k+1

)

(
3g−1
k

) ,

where the asymptotic equivalence is uniform in 0 ≤ k ≤ 3g − 1. Plugging the resulting asymptotics for
2-correlators into the sum involved in Formula (6.20) we get

3g−1
∑

k=0

(
3g − 1 + 2n

n+ k

)

〈τkτ3g−1−k〉g ∼ 1

24g · g! ·
1

6g

3g−1
∑

k=0

(
3g−1+2n

n+k

)(
6g

2k+1

)

(
3g−1
k

) .
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Applying asymptotic Formula (B.8) to the above sum we get

3g−1
∑

k=0

(
3g−1+2n

n+k

)(
6g

2k+1

)

(
3g−1
k

) ∼ 26g+2n−1 as g → +∞ .

Applying (6.39), plugging the asymptotic expression above into Formula (6.20) and replacing the binomial
(
4g+n

g

)
by the equivalent asymptotic expression given by (6.26) we get

Vol(Γ1(g + 1, n)) = cyl1(Γ1(g + 1, n)) = 2g+2 (4g + n)!

(3g − 1 + n)!

3g−1
∑

k=0

(
3g − 1 + 2n

n+ k

)

〈τkτ3g−1−k〉g

∼ 2g+2 · (3g+n) ·
(
4g + n

g

)

· 1

24g
· 1

6g
· 26g+2n−1 ∼ 2g+1 ·

((
4

3

)4g+n

· 3g−
1
2 ·
√

2

πg

)

· 1

3g · 23g · ·26g+2n−1

=

√
2

3πg
·
(
8

3

)4g

·
(
16

3

)n

as g → +∞ .

Adjusting the above expression to genus g instead of g + 1 we complete the proof of (6.40).
In order to prove (6.41) we apply (6.39) and then use (6.21):

1

2

n∑

n1=0

(
n

n1

) g
∑

g1=0

|Aut(Γg2,n2

g1,n1
)| ·Vol(Γg2,n2

g1,n1
) =

1

2

n∑

n1=0

(
n

n1

) g
∑

g1=0

|Aut(Γg2,n2

g1,n1
)| · cyl1(Γg2,n2

g1,n1
)

= 2g+1 ·
(
4g − 4 + n

g

)

· 1

24g

g
∑

g1=0

(
g

g1

)(
3g − 4 + 2n

3g1 − 2 + n

)

.

Applying Formula (6.26) to the binomial coefficient
(
3g−4+2n
3g1−2+n

)
and asymptotic equivalence (B.8) to the

sum of binomial coefficients we get the following asymptotics for the above expression:

1

2

n∑

n1=0

(
n

n1

) g
∑

g1=0

|Aut(Γg2,n2

g1,n1
)| ·Vol(Γg2,n2

g1,n1
) ∼ 2g+1 · 2

8g−8+2n+
1
2

33g−4+n+
1
2

· 1√
πg

· 1

23g · 3g ·
√
2√

π · 4 · 3 · g ·2
4g+2n−4

=
1

πg
· 2

10g+4n−11

34g+n−3
=

2

3πg
· 1

4g
·
(
8

3

)4g−4

·
(
16

3

)n

as g → +∞ ,

which completes the proof of (6.41). �

Now everything is ready to prove Theorem 2.15.

Proof of Theorem 2.15. Replacing the numerator and the denominator of the fraction in the right-hand
side of (6.38), with respectively (6.41) and (6.40) we obtain the desired asymptotics (2.20). �

We proceed now with a recollection of necessary facts concerning the large genus asymptotics of
the Masur–Veech volume VolQg,n for a fixed value of the parameter n. The large genus asymptotic
formula for the Masur–Veech volume VolQg of the moduli space of holomorphic quadratic differentials
was conjectured in [DGZZ3]. A more ambitious conjecture on the uniform large genus asymptotic formula
for all strata of meromorphic quadratic differentials was stated in [ADGZZ]. This general conjecture is
still wide open. However, the particular case of the principal strata, or equivalently the large genus
asymptotics of VolQg,n for any fixed n was spectacularly proved by A. Aggarwal in [Ag2]. As part of
the proof, he also computed the asymptotics of one-cylinder contribution to VolQg,n.

Proposition (Thm 1.7. [Ag2]). For any fixed n ≥ 0, the following asymptotics hold:

VolQg,n ∼ 4

π
·
(
16

3

)n

·
(
8

3

)4g−4

as g → +∞ ,(6.42)

cyl1(Qg,n) ∼
√

2

3πg
·
(
16

3

)n

·
(
8

3

)4g−4

as g → +∞ .(6.43)

The result of [Ag2] is, actually, much stronger: he proved that the asymptotics (6.42) holds uniformly
for all n such that 20n ≤ log(g).

In the particular case n = 0, relation (6.43) was proved in [DGZZ3] as a combination of [DGZZ3,
(4.5)] and [DGZZ3, (4.15)]. In the general case, relation (6.40) was first proved by A. Aggarwal as a
combination of [Ag2, (8.9)] and [Ag2, Proposition 1] or [Ag2, Lemma 9.2]. Relation (6.43) can be also
obtained as an immediate corollary of Proposition 6.8.
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Corollary 6.9. For any fixed number of poles n ≥ 0, the following asymptotics relations are valid:

cyl1,1(Qg,n) ∼
1

6g

(
8

3

)4g−4

·
(
16

3

)n

as g → ∞ ;(6.44)

p1(Qg,n) ∼
√
6π

12
· 1√

g
as g → ∞ .(6.45)

Proof. It is sufficient to plug the asymptotic expressions (6.42) and (6.43) into definitions (2.3) and (2.10).
�

Note that (6.45) coincides with (2.12), so the proof of Theorem 2.9 is completed.

Proof of Formula (2.5) from Theorem 2.5. Using Stirling’s formula for the factorial (4g − 4 + n)! in the
denominator of the right-hand side expression in (2.2), we get

(4g − 4 + n)!n! (12g − 12 + 4n) ∼ n!(4g)n−4
√

8πg

(
4g

e

)4g

· 12g as g → +∞ .

Plugging the expression (6.44) for the large genus asymptotics of cyl1,1(Qg,n) into Formula (2.2) for Cg,n

and simplifying the fraction we obtain the desired asymptotics (2.5). �

6.5. Large genus asymptotic count of oriented meanders. The large genus volume asymptotics
for Abelian differentials was conjectured in [EZor]. The conjecture was proved by D. Chen–M. Möller–
D. Zagier in [CMZ] for the principal stratum H(12g−2), by A. Sauvaget in [Svg1] for the minimal stratum
H(2g−2) and finally by A. Aggarwal [Ag1] for all strata. A. Sauvaget computed in [Svg2] the next terms
in the asymptotic expansion of the volumes. D. Chen–M. Möller–A. Sauvaget–D. Zagier interpreted
the volumes in terms of intersection numbers in [CMSZ, Theorem 1.1] and showed that these volumes
satisfy certain recursion relation, see [CMSZ, Theorem 3.1]. They have found an alternative proof of the
conjecture [EZor] on large genus volume asymptotics for all strata, and even for all connected components
of all strata of Abelian differentials.

The contribution of the one-cylinder square-tiled surfaces to the Masur–Veech volume of any connected
component of any stratum of Abelian differentials is evaluated in our paper [DGZZ1]. The contribution
of the square-tiled surfaces with a single cylinder of height 1 is deduced easily by dividing by ζ(d), where
d is the dimension of the stratum, see (3.8) or [DGZZ2, Remark 4.29] for more details. We now recall
the relevant results concerning the large genus asymptotics of the quantities VolH(12g−2) = VolHg and
cyl1(H(12g−2)) = cyl1(Hg) for the principal stratum and deduce from them the asymptotics of cyl1,1(Hg),
p1(Hg), and of C+

g .

Proposition ([CMZ, Theorem 19.3]). The following asymptotics holds:

(6.46) VolHg =
1

4g−2

(

1− π2

24g
+O

(
1

g2

))

as g → ∞ .

Proposition ([DGZZ1, Corollaries 2.6 and 2.12]). The following relation hold:

(6.47) cyl1(Hg) =
1

(2g − 1) · 22g−3
=

1

g · 4g−1

(

1 +
1

2g
+O

(
1

g2

))

as g → ∞ .

Corollary 6.10. The following asymptotics holds

p1(Hg) =
1

4g

(

1 +
12 + π2

24g
+O

(
1

g2

))

as g → +∞ ,(6.48)

cyl1,1(Hg) =
1

g2 · 4g
(

1 +
24 + π2

24g
+O

(
1

g2

))

as g → +∞ ,(6.49)

C+
g =

1

4
√
π
· 1

g
3
2

(
e

4g

)2g (

1 +
29 + π2

24g
+O

(
1

g2

))

as g → +∞ .(6.50)

Proof. We have p1(Hg) =
cyl1(Hg)
VolHg

by (2.15). We have cyl1,1(H(g)) =
cyl1(Hg)

2

VolHg
by (2.3). Applying (6.46)

and (6.47) we get (6.48) and (6.49).

Finally, C+
g =

cyl1,1(Hg)
(2g−2)!(8g−6) by (2.7). For the asymptotic expansion (6.50), we use the asymptotic

formula for the factorial:

n! =
√
2πn

(n

e

)n
(

1 +
1

12n
+O

(
1

n2

))

as n→ ∞,



30 V. DELECROIX, É. GOUJARD, P. G. ZOGRAF, AND A. ZORICH

so we get

1

(2g − 2)!
=

2g(2g − 1)

(2g)!
= (2g)2

(

1− 1

2g

)
1

(2g)!

=
1

2
√
πg

· e2g

(2g)2g−2

(

1− 13

24g
+O

(
1

g2

))

as g → ∞ .

Multiplying the expression above by 1
8g−6 and by (6.49) we get the desired relation (6.50). �

Note that the results of A. Sauvaget [Svg2] allow to compute the asymptotic expansion of VolHg of
any order: for any integer r ≥ 1, he defines by an explicit recursion real coefficients (cs)s=0..r, such that

VolHg = 22g−2
r∑

s=0

cs
gs

+O

(
1

gr+1

)

as g → +∞ .

Thus, using the close expression (6.47) for the quantity cyl1(Hg) which we have evaluated in [DGZZ1,
Corollaries 2.6 and 2.12], one can extend the asymptotic expansions (6.48)–(6.50) for p1(Hg), cyl1,1 and
C+

g up to any order in 1
g .

Appendix A. Meanders and arc systems of special combinatorial types

As before, having a transverse pair of multicurves on a surface S, denote by G the associated embedded
graph obtained as the union of multicurves. Boundary components of the complement S \ G might have
only even number of sides. The boundary components with two sides are call bigons, see Definition 1.1.

All the techniques used in this paper apply to count of meanders and arc systems in the following
more restrictive setting. Fix a finite subset F of N∗ and fix a map µ from F to N∗. We introduce the
following notation:

|µ| =
∑

j∈F

j · µ(j) , ℓ(µ) =
∑

j∈F

µ(j) , ℓodd(µ) =
∑

j∈F
j is odd

µ(j) .

Definition A.1. We say that a pair of transverse multicurves has type µ if for every j ∈ F the complement
S\G has exactly µ(j) boundary components with 2j+4 sides and for any j ∈ N∗\F there are no boundary
components with 2j + 4 sides.

Note that a type µ defined above does not impose restrictions neither on a number of quadrangular
boundary components, nor on a number of bigons.

The moduli space of meromorphic quadratic differentials on a surface of genus g with exactly n simple
poles is naturally stratified by strata Q(jµ(j),−1n) (also denoted Q(µ, (−1)n) for brevity) of quadratic
differentials with prescribed orders of zeroes (µ(j) zeroes of order j for j = 1, 2, . . . ) and n simple poles
(see e.g. [Zor2] for references), where |µ| = 4g − 4 + n.

We call the following two collections of data exceptional :

(A.1)
{
g = 2, n = 0, F = {3, 1}, µ(3) = µ(1) = 1

}
and

{
g = 2, n = 0, F = {4}, µ(4) = 1

}
.

All other collections {g, n, F, µ} as above satisfying both conditions g + 2n ≥ 4 and |µ| = 4g − 4 + n are
called non-exceptional.

The strata Q(3, 1) and Q(4) corresponding to exceptional collections {g, n, F, µ} are empty while the
strata corresponding to non-exceptional collections are not, see [MaSm].

Similarly, the moduli space of Abelian differentials on a surface of genus g is naturally stratified by
strata H(jµ(j)) (also denoted H(µ) for brevity) of Abelian differentials with prescribed orders of zeroes
(µ(j) zeroes of order j for j = 1, 2, . . . ) where |µ| = 2g− 2. Recall that Abelian differentials do not exist
in genus zero; the only stratum in genus g = 1 is H(0); for g ≥ 2 and any µ satisfying |µ| = 2g − 2 the
stratum H(µ) is not empty.

For any pair of nonnegative integers g and n satisfying g+2n ≥ 4 there exist a nonorientable transverse
pair of multicurves of type µ with n bigons on a surface of genus g if and only if there exists a nonnegative
integer g′ ≤ g such that {g′, n, F, µ} is non-exceptional. The pair is filling if and only if g′ = g. Pairs
of transverse multicurves on a surface of genus g = 2 with no bigons and such that F = {3, 1} do not
exist. Pairs of transverse multicurves on a surface of genus g = 2 with no bigons such that F = {4} and
µ(4) = 1 do exist, but they are necessarily orientable. All these properties remain valid when both (or
one of the) multicurves are simple closed curves.

The correspondence between pairs of multicurves and square-tiled surfaces holds when fixing the type,
as detailed below. To lighten the presentation we focus from now on filling pairs of multicurves. The
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arguments of the proof of Theorem 2.5 can be easily adapted to this more restrictive setting to show that
the contribution of non filling pairs is negligible.

Recall that simple poles of a meromorphic quadratic differential q associated to a square-tiled surface
G∗ correspond to bigons of G and zeroes of order j ∈ N of q correspond to (2j +4)-gons. Proposition 4.1
translates in this new setting as follows.

Proposition A.2. For any non-exceptional data {g, n, F, µ}, filling transverse connected pairs of multi-
curves of type µ with exactly n bigons on a surface of genus g are in a natural one-to-one correspondence
with square-tiled surfaces of genus g (with non-labeled conical points) in the stratum Q(µ, (−1)n). The
square tiling is given by the dual graph G∗ of the graph G formed by the union of the two multicurves.

Considering only filling transverse connected pairs of simple closed curves of type µ we get a bijection
with the subset of square-tiled surfaces (with non-labeled conical points) in Q(µ, (−1)n) having a single
horizontal and a single vertical band of squares.

Equation (3.1), Theorems 3.1, 3.2, 3.3, 3.4 hold when replacing

Qg,n by Q(µ, (−1)n)
d = dimC Qg,n = 6g − 6 + 2n by d = dimC Q(µ, (−1)n) = 2g − 2 + ℓ(µ) + n

Hg by H(µ)
d = dimC Hg = 4g − 3 by d = dimC H(µ) = 2g − 1 + ℓ(µ).

Using step by step the same arguments, we get the following results for the count of meanders and arc
systems in this setting.

Theorem A.3. For any non-exceptional data {g, n, F, µ}, the number Mg,n,µ(N) of (filling) meanders of
type µ and genus g with at most 2N crossings and n bigons satisfies the following asymptotics as N → ∞:

Mg,n,µ(N) = Cg,n,µN
d + o(Nd) ,

where d = 2g − 2 + ℓ(µ) + n and

Cg,n,µ =
cyl1,1(Q(µ,−1n))

n!
∏
µ(j)! · 2d .

Remark A.4. We could chose a setting in which we impose to a filling transverse pair of simple closed
curves on a surface of genus g have exactly n bigons, but at least µ′(1) hexagonal faces, at least µ′(2)
octagonal faces, etc, assuming that |µ′| < 4g − 4 + n. This lets certain freedom for the number and
types of the remaining nontrivial faces — the ones with at lest 6 edges. The dimensional consideration
as in Section 4 imply that the predominant configuration for a meander satisfying these constraints is
the one having the maximal possible number 4g − 4 + n − |µ′| of faces of degree 6 allowed by the Euler
characteristic constraints, and the rest of the faces (except for the n bigons) of degree 4. In this setting
meanders with other collections of nontrivial faces are negligible in the asymptotic count.

In the oriented case, similar results hold for any g ≥ 2, any finite subset F of N∗, and any map
µ : F → N∗ such that |µ| = 2g − 2. We denote by M+

g,µ(N) the number of oriented meanders of genus
g with at most N crossings, and exactly µ(j) faces of valency 4(j + 1) for j ∈ F and with no faces of
valency 4(j + 1) for j ∈ N∗ \ F . We call such meanders oriented meanders of type µ.

Theorem A.5. For any genus g ≥ 2, any finite subset F of N∗, and any map µ : F → N∗ such that
|µ| = 2g − 2, the number M+

g,µ(N) of oriented meanders of type µ and genus g with at most N crossings
satisfies the following asymptotics:

M+
g,µ(N) = C+

g,µN
d + o(Nd) as N → ∞ ,

where d = 2g − 1 + ℓ(µ), and

C+
g,µ =

cyl1,1(H(µ))
∏
µ(i)! · 2d

is a rational multiple of π−2g.

Similarly, for any non-exceptional data {g, n, F, µ} we define arc systems of type µ. Fix the upper
bound N for the number of arcs. Denote by ASg,n,µ(N) the number of all possible couples (balanced arc
system of type µ of genus g with n bigons with k ≤ N arcs; identification) considered up to a natural
equivalence. Denote by MASg,n,µ(N) the number of those couples, which give rise to a meander. Define

Pg,n,µ(N) =
MASg,n(N)

ASg,n,µ(N)
.

Recall that by convention g denotes the genus of the surface obtained after identification of the two
boundary components.
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Theorem A.6. The proportion of arc systems of type µ and genus g with n bigons giving rise to meanders
among all such arc systems satisfies

lim
N→∞

Pg,n,µ(N) = p1(Q(µ,−1n)) ,

where

p1(µ, (−1)n) =
cyl1(Q(µ, (−1)n))

Vol1 Q(µ, (−1)n)
.

Remark A.7. It was proved in[DGZZ2] that

cyl1,1 (Q(µ, (−1)n)) =

(
cyl1 (Q(µ, (−1)n))

)2

VolQ(µ, (−1)n)
,

where cyl1 (Q(µ, (−1)n)) ∈ Q. Recall that for every quadratic differential q on a Riemann surface S of

genus g there exists a canonical double cover p : Ŝ → S such that p∗q is a square of globally defined
holomorphic 1-form. Denote by ĝ the genus of the covering surface Ŝ and by geff the effective genus
defined as ĝ − g. One has 2geff = 2 + |µ|+ ℓodd(µ), see, say [EKZ].

Conjecturally, Vol1 Q(µ, (−1)n) is a rational multiple of π2geff . This conjecture is valid for all strata
in genus 0 as follows from a close formula for the Masur–Veech volume of any stratum in genus zero
obtained in [AEZ2]. It is also valid for all strata of dimension at most 12: their volumes were explicitly
computed in [Gj] using the approach of [EO2]. Finally, in the case when zeros have only odd degrees,
the conjecture was recently proved in [KN] and also follows from results of D. Chen, M. Möller and
A. Sauvaget. However, in the presence of zeroes of even degrees, the Conjecture is still open.

Similarly we define oriented arc systems of type µ and define the proportion P+
g,µ as previously.

Theorem A.8. The proportion of oriented arc systems of type µ and genus g giving rise to oriented
meanders among all such arc systems satisfies

lim
N→∞

P+
g,µ(N) = p1(H(µ)) ,

where

p1(H(µ)) =
cyl1(H(µ))

Vol1 H(µ)

is a rational multiple of π−2g. Furthermore, we have

lim
g→+∞

p1(H(µ)) · (2g + ℓ(µ)) = 1

uniformly for all partitions µ such that |µ| = 2g − 2.
The latter limit is proved in [DGZZ1, Corollary 2.12], which uses the uniform large genus asymptotic

formula for Vol1 H(µ) conjectured in [EZor] and proved independently in [Ag1] and [CMSZ].

Appendix B. Sum of a rational function over binomial coefficients

B.1. Sum of ratios of binomial coefficients. We are interested in the asymptotics as n→ ∞ of sums
of the form

∑

k

(
an+b
ck+d

)

(
sn+t
uk+v

) ,

where the sum is over the integers k such that 0 ≤ ck + d ≤ an + b and 0 ≤ uk + v ≤ sn + t. Here
(a, b, c, d, s, t, u, v) are integral parameters with a, c, s, u positive. In Section B.2 we consider asymptotics
of more general sums of similar kind. The asymptotics takes a particularly nice form when a/c = s/u.

Theorem B.1. Let (a, b, c, d, s, t, u, v) be integers such that a, c, s, u are strictly positive integers, a/c =
s/u, and a > s. Let α = a/c = s/u. Assume that α > 1. The following asymptotics holds

(B.1)
∑

k

(
an+b
ck+d

)

(
sn+t
uk+v

) ∼ 2(a−s)n+(b−t) · α ·
√

π

2(a− s)

s

a
·
√
n as n→ ∞ ,

where the summation is taken over all integers k satisfying all of the following conditions: 0 ≤ ck + d ≤
an+ b and 0 ≤ uk + v ≤ sn+ t.
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The above result is a direct corollary of the Local Limit Theorem B.2 combined with Theorem B.4
providing tail estimates. We state the Local Limit Theorem for the interpolation of binomial coefficients
in terms of the Γ-function. Namely, for real numbers 0 ≤ x ≤ y we let

(
y

x

)

:=
Γ(y + 1)

Γ(x+ 1) · Γ(y − x+ 1)
.

Theorem B.2. Consider (a, b, c, d, s, t, u, v) and α satisfying assumptions of Theorem B.1. Let 0 < δ <

1/4 and let k(x, n) = αn
2

(

1 + x√
n

)

, where −n1/4−δ ≤ x ≤ n1/4−δ.

For any δ as above the following asymptotic equivalence holds

(B.2)

(
an+b

ck(x,n)+d

)

(
sn+t

uk(x,n)+v

) ∼ 2(a−s)n+(b−t) exp

(

− (a− s)x2

2

)√
s

a
as n→ ∞

uniformly in x ∈ [−n1/4−δ, n1/4−δ].
Furthermore, for any 0 < ε < 1 we have

(B.3)

(
an+b

ck(x,n)+d

)

(
sn+t

uk(x,n)+v

) ≤ 2(a−s)n+(b−t) exp

(

− (a− s)x2

2

)√
s

a
+O

(
1

n

)

.

uniformly in x ∈ [−(1− ε)
√
n, (1− ε)

√
n].

Remark B.3. Note that the right-hand sides of the asymptotic expressions (B.1), (B.2) and (B.3) do not
depend on d and v.

Theorem B.2 provides upper bounds for the expression in the left-hand side of (B.3) only outside of
the tails x ∈

[
− √

n,−(1 − ε)
√
n
)
∪
(
(1 − ε)

√
n,

√
n
]
, for which certain approximations in the proof of

Theorem B.2 become invalid. However we can apply a softer large deviation estimates for the tails to
show that the tail contribution to the sum (B.1) is of exponentially lower order.

Theorem B.4. Let H(p) = −p log(p)− (1− p) log(1− p), where 0 < p < 1. For any ε ∈ (0, 1] we have

(B.4)
∑

|k−αn
2

|≥α
2
(1−ε)n

(
an+b
ck+d

)

(
sn+t
uk+v

) = O(ε · a · n · exp(a · n ·H(1− ε/2))) as n→ +∞ .

The function H(p) can be extended by continuity to p = 0 and p = 1 as H(0) = H(1) = 0.

Remark B.5. Theorem B.4 provides just a rough large deviation upper bound. We expect that a finer
estimate with the exponent n(a − e)H(1 − ε/2) in the right hand side should be valid. However, since
such a refinement is not needed for our purpose, we did not seek for an optimal bound.

The proof of Theorem B.2 follows closely the proof of the de Moivre-Laplace theorem for binomial
coefficients. Studying a ratio of binomials rather than a single binomial does not introduce much difficulty.

Before proceeding to the proofs of Theorems B.2 and Theorem B.4, we recall in Lemmas B.6, B.8 and
B.9 well-known facts about binomial coefficients.

Lemma B.6. We have

(B.5)

(
n

pn

)

= enH(p) · 1
√

2 π p (1− p) n

(

1 +O

(
1

n

))

as n→ ∞

uniformly in p restricted to compact subsets of (0, 1).

Remark B.7. Actually, expression (B.5) can be strengthened to the following explicit bounds

(B.6) 1− 1− p (1− p)

12 · p · (1− p)
· 1
n
<

(
n
pn

)

enH(p) · 1√
2 π p (1−p) n

< 1

valid for any p ∈ (0, 1). We limit ourself to a weaker version sufficient for our needs.

Proof of Lemma B.6. Since all of n, pn and (1 − p)n tend to +∞ we could apply Stirling’s asymptotic
formula to the three factorials (or, more generally, to the three Γ-functions) in

(
n
pn

)
= n!

(pn)!((1−p)n)! . We
get

(
n

np

)

=

(
n
e

)n √
2 · π · n

(
pn
e

)pn √
2 · π · p · n

(
(1−p)n

e

)(1−p)n√
2 · π · (1− p) · n

(

1 +O

(
1

n

))

.

The right hand side in the above equation simplifies as (B.5). �



34 V. DELECROIX, É. GOUJARD, P. G. ZOGRAF, AND A. ZORICH

Lemma B.8. Let H(p) = −p log p− (1− p) log(1− p) be as in Theorem B.4. Then, for any x ∈ (−1, 1)
we have

H

(
1

2
+
x

2

)

= log(2)−
∑

n≥1

x2n

2n(2n− 1)
.

In particular, for any x ∈ (−1, 1) we have

H

(
1

2
+
x

2

)

≤ log(2)− x2

2

and for small x

H

(
1

2
+
x

2

)

= log(2)− x2

2
+O(x4).

Proof. The function H is analytic on [0, 1]. Centered at p = 1/2, the radius of convergence is 1/2 and we
get the formula. �

Finally, in the proof of Theorem B.4 we will use the following version of the large deviations for
binomials.

Lemma B.9 ([ArrGor, Theorem 1]). For any s ∈]1/2, 1[ we have

∑

k≥sn

(
n

k

)

≤ enH(s).

(In notation of [ArrGor] one has to let p = 1/2 and to multiply both sides of an analogous relation by
2n.) The paper[ArrGor] also provides a finer asymptotic equivalence.

We are now ready to proceed to the proofs of Theorem B.4 and Theorem B.2.

Proof of Theorem B.4. The denominator
(
sn+t
uk+v

)
in the left-hand side of (B.4) is at least 1, so each term

in the sum in the left hand side of (B.4) is bounded from above by the numerator
(
an+b
ck+d

)
.

We now bound the numerators using Lemma B.9. For any ε′, ε satisfying 0 < ε < ε′ < 1 we have

∑

k≥α(1−ε/2)n

(
an+ b

ck + d

)

=
∑

ck≥(1−ε/2)n

(
an+ b

ck + d

)

.
∑

(ck+d)≥(1−ε′/2)(an+b)

(
an+ b

ck + d

)

≤ e(an+b)H(1−ε′/2) = O(exp(a · n ·H(1− ε′/2))) as g → ∞.

The case k ≤ (ε/2) · α · n is symmetric. �

Proof of Theorem B.2. Recall that by assumption α = a/c = s/u ≥ 1. Our parameter k satisfies 0 ≤
ck + d ≤ an+ b and 0 ≤ uk + v ≤ sn+ t. In other words

max

(

−d
c
,− v

u

)

≤ k ≤ αn+min

(
b− d

c
,
t− v

u

)

.

We let k = αn
2

(

1 + x√
n

)

with x ∈ (−√
n,

√
n).

By Lemma B.6 we have

(B.7)

(
an+b
ck+d

)

(
sn+t
uk+v

) ∼ exp ((an+ b)H(f1(x, n)) − (sn+ t)H(f2(x, n))) ·
√

R(x, n) ,

where R(x, n) = f2(x,n)·(1−f2(x,n))·(sn+t)
f1(x,n)·(1−f1(x,n))·(an+b) , f1(x, n) =

ck+d
an+b and f2(x, n) =

uk+v
sn+t .

Let us first analyze f1(x, n) and f2(x, n). Equalities α = a/c = s/u allows to rewrite these functions
as

f1(x, n) =

1
2 + x

2
√
n
+ d

a
1
n

1 + b
a

1
n

and f2(x, n) =

1
2 + x

2
√
n
+ v

s
1
n

1 + t
s
1
n

.

Since x/
√
n = O(1), uniformly in x ∈ [−√

n,
√
n] we have that f1 and f2 are of the same order

f1(x, n) =
1

2
+

x

2
√
n
+O

(
1

n

)

and f2(x, n) =
1

2
+

x

2
√
n
+O

(
1

n

)

.

By Lemma B.8, we get

(an+ b)H(f1(x, n))− (sn+ t)H(f2(x, n)) = ((a− s)n+ (b− t))

(

H

(
1

2
+

x

2
√
n

)

+O

(
1

n2

))
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uniformly for x inside [−(1− ε)
√
n, (1− ε)

√
n]. In particular,

(an+ b)H(f1(x, n))− (sn+ t)H(f2(x, n)) ≤ ((a− s)n+ (b − t))

(

log(2)− x2

2n

)

+O

(
1

n

)

uniformly for x inside [−(1− ε)
√
n, (1− ε)

√
n].

We now analyze the behavior close to x = 0. Let us fix 0 < δ < 1/2 small and consider k =
αn
2

(

1 + x√
n

)

with x ∈ [−n1/4−δ, n1/4−δ]. All the O(·)-estimates below are independent of x in this

interval but do depend on the choice of δ. We obtain

(an+ b) H(f1(x, n)) = (an+ b)

(

log(2)− x2

2 · n +O

(
x4

n2

))

= (an+ b) log(2)− ax2

2
+O

(
n−4δ

)
.

The same analysis holds for f2(x, n) and we obtain

(an+ b)H(f1(x, n))− (sn+ t)H(f2(x, n)) = ((a− s)n+ (b− t)) log(2)− (a− s)x2

2
+O

(
n−4δ

)
.

For the remaining term we have

R(x, n) =
s

a
+
at− bs

a2
1

n
+O

( x

n3/2

)

=
s

a
+O

(
1

n

)

.

uniformly for x ∈ [−√
n,

√
n] and we obtain (B.2) and (B.3). �

We are ready to deduce Theorem B.1 from Theorems B.4 and B.2.

Proof of Theorem B.1. Theorems B.2 and B.4 imply that the main contribution to the sum (B.1) comes

from the terms with k = k(x) = αn
2

(

1 + x√
n

)

, where x ∈ [−n1/4−δ, n1/4−δ]. Here one can choose any δ

satisfying 0 < δ < 1/4.
As k varies in the integers, the values of x takes successive values spaced by 2

α
√
n
, and hence

∑

k

(
an+b
ck+d

)

(
sn+t
ek+f

) ∼ 2(a−s)n+(b−t) ·
√
s

a
· α · √n

2
·
∫ +∞

−∞
exp

(

− (a− s)x2

2

)

dx.

The value of the integral is
√

π · 2
a−s and we find (B.1). �

B.2. General case. Theorem B.1 admits the following straightforward generalization.

Theorem B.10. Let (ai, bi, ci, di), where i = 1, . . . , l, and (sj , tj , uj, vj), where j = 1, . . . ,m, be collec-
tions of integers. Denote a = a1 + · · · + al, b = b1 + · · · + bl, s = s1 + · · · + sm, t = t1 + · · · + tm,
A = a1 · · · al, S = s1 · · · sm.

Suppose that all ai, ci, sj , uj are strictly positive. Suppose that ai

ci
=

sj
uj

= α ≥ 1 for i = 1, . . . , l and

for j = 1, . . . ,m. Suppose that a > s. Then

(B.8)
∑

k

(
a1n+b1
c1k+d1

)
· · ·
(
aln+bl
clk+dl

)

(
s1n+t1
u1k+v1

)
· · ·
(
smn+tm
u1k+vm

) ∼ α ·
(π

2

)m−l+1

2 ·
√

1

(a− s)

S

A
· nm−l+1

2 · 2(a−s)n+(b−t) as n→ +∞ ,

where summation is performed over all integers k which satisfy all of the following conditions: 0 ≤
cik + di ≤ ain+ bi for all i = 1, . . . , l and 0 ≤ ujk + vj ≤ sjn+ tj for all j = 1, . . . ,m.

In the case when m = 0, we let s = t = 0 and S = 1.

Proof. The proof follows the proof of Theorem B.1 line-by-line. The only slight difference in the asymp-
totic expression comes from the form of the factor R(x, n) in an analog of expression (B.7). Namely, now
we have

(B.9)

(
a1n+b1
c1k+d1

)
· · ·
(
aln+bl
clk+dl

)

(
s1n+t1
u1k+v1

)
· · ·
(
smn+tm
u1k+vm

) ∼ exp
(

(a1n+ b1)H(f1,1(x, n)) + · · ·+ (aln+ bl)H(f1,l(x, n))
)

× exp
(

− (s1n+ t1)H(f2,1(x, n))− · · · − (smn+ tm)H(f2,m(x, n))
)

·
√

R(x, n) ,
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where

f1,i(x, n) =
cik + di
ain+ bi

, i = 1, . . . , l ;

f2,j(x, n) =
ujk + vj
sjn+ tj

, j = 1, . . . ,m ;

R(x, n) =

∏m
j=1 f2,j(x, n) · (1 − f2,j(x, n)) · (sjn+ tj)

∏m
j=1 f1,i(x, n) · (1 − f1,i(x, n)) · (ain+ bi)

.

Restricting R(x, n) to x ∈ [−(1− ε)
√
n, (1− ε)

√
n] we get

R(x, n) =

∏m
j=1

(
2π · f2,j(x, n) · (1− f2,j(x, n)) · (sjn+ tj)

)

∏l
j=1

(
2π · f1,i(x, n) · (1− f1,i(x, n)) · (ain+ bi)

)

= (2π)m−l ·
∏m

j=1

(
1
4 − x2

4n +O
(
1
n

))

∏l
j=1

(
π
2 − π·x2

2n + O
(
1
n

)) ·
∏m

j=1(sjn+ tj)
∏l

i=1(ain+ bi)

=

(
π

2
− πx2

2n

)m−l

· S
A

· nm−l ·
(

1 +O

(
1

n

))

,

where A =
∏l

i=1 ai and S =
∏m

j=1 sj . This expression gives rise to the factor

√
(
π
2

)m−l · S
A · nm−l

generalizing the factor
√

s
a which we get in the particular case m = l = 1 represented by formula (B.1)

in Theorem B.1. �

Example B.11. Formula (B.8) provides an alternative proof of the asymptotics

n−1∑

k=1

(
n

k

)(
3n− 4

3k − 2

)

∼ 1√
6πn

· 24n−4 as n→ +∞

from Lemma 4.6 in [DGZZ3].

Example B.12. The Dixon sum Sn(p, x) is defined as

Sn(p, x) :=

n∑

k=0

(
n

k

)p

xk, n = 1, 2, . . . ,

see [Dix]. Only few exact values of Sn(p, x) are known, see [Is]. For any fixed p ∈ N formula (B.8) gives
the following asymptotic expressions for Sn(p, 1):

(B.10) Sn(p, 1) ∼
1√
p
·
(
2

π

) p−1

2

· 1

n
p−1

2

· 2pn as n→ +∞ .

B.3. Application to 2-correlators. Table 2 provides the exact values of the sums of 2-correlators for
small genera g while Proposition B.13 below describes the large genus asymptotic behavior of this sum.

1 2 3 4 5 6 7

1
8

49
2880

1181
725760

467
3870720

33631
4598415360

322873
860823355392

205001
12297476505600

Table 2. Sums
3g−1∑

k=0

〈τkτ3g−1−k〉g of two-correlators for g = 1, . . . , 7.

Proposition B.13. The following asymptotic formulas hold:

(B.11)

3g−1
∑

k=0

〈τkτ3g−1−k〉g ∼
√
3

3
·
(
2

3

)g

· 1

(2g + 1)!!
∼ 1

2
√
6
· 1
g
·
(
e

3g

)g

as g → +∞ .

Proof. Consider the following normalization of the 2-correlators 〈τkτ3g−1−k〉g introduced in [Zog1]:

ag,k =
(2k + 1)!! · (6g − 1− 2k)!!

(6g − 1)!!
· 24g · g! · 〈τkτ3g−1−k〉g .
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The left-hand side of (B.11) can be rewritten in this notation as

(B.12)

3g−1
∑

k=0

〈τkτ3g−1−k〉g =
(6g − 1)!!

24g · g! ·
3g−1
∑

k=0

ag,k
(2k + 1)!! · (6g − 1− 2k)!!

.

By [DGZZ3, Proposition 4.1] for all g ∈ N and for all integer k in the range {2, 3, . . . , 3g−3} the following
bounds are valid:

1− 2

6g − 1
= ag,1 = ag,3g−2 < ag,k < ag,0 = ag,3g−1 = 1 .

These bounds combined with (B.12) imply

(B.13)

3g−1
∑

k=0

〈τkτ3g−1−k〉g =
(6g − 1)!!

24g · g!

3g−1
∑

k=0

1

(2k + 1)!! · (6g − 1− 2k)!!
·
(
1 + o(1)

)
as g → +∞ .

Passing from double factorials to factorials, collecting powers of 2 and 3, and passing to binomial
coefficients we can rewrite the expression in the right-hand side of the above relation as

(6g − 1)!!

24g · g!

3g−1
∑

k=0

1

(2k + 1)!! · (6g − 1− 2k)!!
=

1

24g · g! ·
(6g)!

23g · (3g)!

3g−1
∑

k=0

2k · k!
(2k + 1)!

· 2
3g−1−k · (3g − 1− k)!

(6g − 1− 2k)!

=
1

3g
· 1

23g+1
· (6g)!

g! · (3g)! ·
(3g − 1)!

(6g)!

3g−1
∑

k=0

k! · (3g − 1− k)!

(3g − 1)!
· (6g)!

(2k + 1)! · (6g − 1− 2k)!

=
1

3g
· 1

23g+1
· 1

g! · 3g

3g−1
∑

k=0

(
6g

2k+1

)

(
3g−1
k

) .

From Theorem B.1 with a = 6, b = 0, c = 2, d = 1, s = 3, t = −1, u = 1 and v = 0 we obtain

(B.14)

3g−1
∑

k=0

(
6g

2k+1

)

(
3g−1
k

) ∼ 23g+1 · 3 ·
√

π

6
· 1
2
· √g ∼ (g!)2

(2g)!
· 25g ·

√
3

where the second equivalence is obtained by Stirling’s formula.
Combining the above equalities we can rewrite (B.13) as

3g−1
∑

k=0

〈τkτ3g−1−k〉g ∼ 1

3g
· 1

23g+1
·
(

1√
2πg

·
(
e

g

)g)

· 1

3g
·
(

23g+1 · 3 ·
√

π

6
· 1
2
· √g

)

∼
(
e

3g

)g

· 1

2
√
6
· 1
g

and also as

3g−1
∑

k=0

〈τkτ3g−1−k〉g =
1

3g
· 1

23g+1
· 1

g! · 3g ·
√
3 · 25g · (g!)2

(2g)!
·
(
1 + o(1)

)

=

√
3

3
·
(
2

3

)g

· 1

2g
· 2

g · g!
(2g)!

· 2g

2g + 1

(
1 + o(1)

)
=

√
3

3
·
(
2

3

)g

· 1

(2g + 1)!!
·
(
1 + o(1)

)
as g → +∞ .
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[CMSZ] D. Chen, M. Möller, A. Sauvaget, D. Zagier, Masur–Veech volumes and intersection theory on moduli spaces of
Abelian differentials, Invent. Math. 222 (2020), no. 1, 283–373.

[CuKST] N. Curien, G. Kozma, V. Sidoravicius, and L. Tournier, Uniqueness of the infinite noodle, Ann. Inst. Henri
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